(本小題滿分12分)已知函數(shù)滿足.
(Ⅰ)求的解析式及其定義域;
(Ⅱ)寫出的單調區(qū)間并證明.
(Ⅰ)
(Ⅱ)函數(shù)在區(qū)間單調遞減,用函數(shù)單調性的定義證明即可.

試題分析:(Ⅰ)令,                                          ……2分
 ,                                                              ……4分
,
.                                                 ……6分
(Ⅱ)函數(shù)在區(qū)間單調遞減.                            ……7分
,,                       ……8分
,                        ------10分
時, ∴
同理,當時,
∴函數(shù)在區(qū)間單調遞減.                               ……12分
點評:換元法求函數(shù)的解析式時,要注意換元前后自變量的取值范圍是否發(fā)生了變化;利用定義證明函數(shù)的單調性時,要嚴格按照取值——作差——變形——判號——結論幾個步驟進行,變形要變的徹底.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分10分)某企業(yè)擬投資兩個項目,預計投資項目萬元可獲得利潤
萬元;投資項目萬元可獲得利潤萬元.若該企業(yè)用40
萬元來投資這兩個項目,則分別投資多少萬元能獲得最大利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)南昌市在加大城市化進程中,環(huán)境污染問題也日益突出。據(jù)環(huán)保局測定,某處的污染指數(shù)與附近污染源的強度成正比,與到污染源距離的平方成反比.現(xiàn)已知相距18的A,B兩家工廠(視作污染源)的污染強度分別為,它們連線上任意一點C處的污染指數(shù)等于兩家工廠對該處的污染指數(shù)之和.設).
(1) 試將表示為的函數(shù);
(2) 若,且時,取得最小值,試求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分12分)
設函數(shù),且不等式的解集為,
(1)求的值;
(2)解關于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

對于定義域為的函數(shù)和常數(shù),若對任意正實數(shù),使得恒成立,則稱函數(shù)為“斂函數(shù)”.現(xiàn)給出如下函數(shù):
;             ②;
;               ④.
其中為“斂1函數(shù)”的有
A.①②B.③④C.②③④D.①②③

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若A=,B=R,映射,對應法則為,對于實數(shù),在集合A中不存在原象,則實數(shù)的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本小題滿分16分)
有甲、乙兩種商品,經(jīng)銷這兩種商品所獲的利潤依次為(萬元)和(萬元),它們與投入的資金(萬元)的關系,據(jù)經(jīng)驗估計為:,  今有3萬元資金投入經(jīng)銷甲、乙兩種商品,為了獲得最大利潤,應對甲、乙兩種商品分別投入多少資金?總共獲得的最大利潤是多少萬元?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則使函數(shù)g(x)=f(x)+x-m有零點的實數(shù)m的取值范圍是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

分已知函數(shù)上的奇函數(shù),且
(1)求的值
(2)若,,求的值
(3)若關于的不等式上恒成立,求的取值范圍

查看答案和解析>>

同步練習冊答案