如圖,AB是圓O的直徑,C,F(xiàn)是圓O上的兩點,AF∥OC,過C作圓O的切線交AF的延長線于點D.
(Ⅰ)證明:∠DAC=∠BAC;
(Ⅱ)若CM⊥AB,垂足為M,求證:AM•MB=DF•DA.
分析:(Ⅰ)AF∥OC⇒∠CAF=∠ACO,OA=OC⇒∠CAO=∠ACO,根據(jù)相等的傳遞性,得出∠DAC=∠BAC.
(Ⅱ)連接BC,在RT△ACB中,CM2=AM•MB,又CD為圓O的切線,所以CD2=DF•DA,只需證出CD=CM即可.根據(jù)圓的切線性質,OC⊥CD,結合AD∥OC得出AD⊥CD,從而可以證出RT△AMC≌△RTADC,CM=CD.
解答:證明:(Ⅰ)∵AF∥OC,∴∠CAF=∠ACO.
又∵OA=OC,
∴∠CAO=∠ACO,
∴∠CAF=∠CAB,即∠DAC=∠BAC.
(Ⅱ)連接BC,在RT△ACB中,CM⊥AB,
∴CM2=AM•MB
又CD為圓O的切線,∴CD2=DF•DA
∵OC⊥CD,AD∥OC,∴AD⊥CD.
∴RT△AMC≌△RTADC,∴CM=CD
∴AM•MB=DF•DA.
點評:本題考查的知識點是與圓相關的比例線段,由證明的結論形式分析證明思路,先分析角\邊的關系,再選取恰當?shù)墓、定理、性質是解答此類問題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教網(wǎng)
(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,直三棱柱的一個底面ABC內接于圓O,AB是圓O的直徑.
(1)求證:平面ACD⊥平面ADE;
(2)若AB=2,BC=1,tan∠EAB=
3
2
,求幾何體EDABC的體積V.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年遼寧省錦州市高考數(shù)學二模試卷(解析版) 題型:解答題

(理科)如圖的多面體是底面為平行四邊形的直四棱柱ABCD-A1B1C1D1,經(jīng)平面AEFG所截后得到的圖形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.

(Ⅰ)求證:BD⊥平面ADG;
(Ⅱ)求平面AEFG與平面ABCD所成銳二面角的余弦值.

(文科)如圖,AB為圓O的直徑,點E、F在圓O上,AB∥EF,矩形ABCD所在的平面和圓O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求證:AF⊥平面CBF;
(Ⅱ)設FC的中點為M,求證:OM∥平面DAF.

查看答案和解析>>

科目:高中數(shù)學 來源:陜西省寶雞中學2010屆高三適應性訓練(數(shù)學理) 題型:填空題

 A.(參數(shù)方程與極坐標)

直線與直線的夾角大小為         

 

B.(不等式選講)要使關于x的不等式在實數(shù)

范圍內有解,則A的取值范圍是                  

C.(幾何證明選講) 如圖所示,在圓O中,AB是圓O的直

徑AB =8,E為OB.的中點,CD過點E且垂直于AB,

EF⊥AC,則

CF•CA=            

 

 

 

 

查看答案和解析>>

同步練習冊答案