(14分)已知等差數(shù)列滿足;又?jǐn)?shù)列滿足+…+,其中是首項(xiàng)為1,公比為的等比數(shù)列的前項(xiàng)和。

   (I)求的表達(dá)式;

   (Ⅱ)若,試問(wèn)數(shù)列中是否存在整數(shù),使得對(duì)任意的正整數(shù)都有成立?并證明你的結(jié)論。

解析:(I)設(shè)的首項(xiàng)為,公差為d,于是由

        解得       

       (Ⅱ)

        由  ①

        得     ②

        ①―②得   即

        當(dāng)時(shí),,當(dāng)時(shí),

       

        于是

        設(shè)存在正整數(shù),使對(duì)恒成立

        當(dāng)時(shí),,即

        當(dāng)時(shí),

       

        當(dāng)時(shí),當(dāng)時(shí),,當(dāng)時(shí),

        存在正整數(shù)或8,對(duì)于任意正整數(shù)都有成立。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}的首項(xiàng)為a,公差為b;等比數(shù)列{bn}的首項(xiàng)為b,公比為a,其中a,b∈N+,
且a1<b1<a2<b2<a3
(1)求a的值;
(2)若對(duì)于任意n∈N+,總存在m∈N+,使am+3=bn,求b的值;
(3)在(2)中,記{cn}是所有{an}中滿足am+3=bn,m∈N+的項(xiàng)從小到大依次組成的數(shù)列,又記Sn為{cn}的前n項(xiàng)和,tn和{an}的前n項(xiàng)和,求證:Sn≥Tn(n∈N).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a3=5,且a5-2a2=3.又?jǐn)?shù)列{bn}中,b1=3且3bn-bn+1=0(n=1,2,3,…).
(I) 求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)若ai=bj,則稱ai(或bj)是{an},{bn}的公共項(xiàng).
①求出數(shù)列{an},{bn}的前4個(gè)公共項(xiàng);
②從數(shù)列{an}的前100項(xiàng)中將數(shù)列{an}與{bn}的公共項(xiàng)去掉后,求剩下所有項(xiàng)的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}滿足a3=5,a5-2a2=3,又?jǐn)?shù)列{bn}中,b1=3且3bn-bn+1=0(n∈N*)
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)若數(shù)列{an},{bn}的前n項(xiàng)和分別是Sn,Tn,且cn=
Sn(2Tn+3)
n
.求數(shù)列{cn}的前n項(xiàng)和Mn;
(Ⅲ)若Mn>9logm
3
4
(m>0,且m≠1)
對(duì)一切正整數(shù)n恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•河西區(qū)二模)已知等差數(shù)列{an}滿足a3+a4=9,a2+a6=10;又?jǐn)?shù)列{bn}滿足nb1+(n-1)b2+…+2bn-1+bn=Sn,其中Sn是首項(xiàng)為1,公比為
89
的等比數(shù)列的前n項(xiàng)和.
(1)求an的表達(dá)式;
(2)若cn=-anbn,試問(wèn)數(shù)列{cn}中是否存在整數(shù)k,使得對(duì)任意的正整數(shù)n都有cn≤ck成立?并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案