精英家教網(wǎng)在斜三棱柱ABC-A1B1C1中,BB1=BA=BC=1,∠B1BC=60°,∠ABC=90°,平面BB1C1C⊥平面ABC,M、N分別是BC的三等分點(diǎn).
(1)求證:A1N∥平面AB1M;
(2)求證:AB⊥B1M;
(3)求三棱錐A-B1BC的體積V.
分析:(1)OM為△A1BN的中位線,所以O(shè)M∥A1N又∵A1N?平面AB1M,OM?平面AB1M∴A1N∥平面AB1M.
(2)AB⊥BC,AB?平面ABC,所以AB⊥平面BB1C,又B1M?平面BB1C1C,∴AB⊥B1M.
(3)由AB⊥平面BB1C1C可得三棱錐的高是AB,底面為三角形BCB1所以可求的三棱錐的體積為
1
3
×(
1
2
× 1×1×sin60°)×1=
3
12
解答:解(1)連A1B交AB1與O,連OM,精英家教網(wǎng)
則OM為△A1BN的中位線
∴OM∥A1N
∵A1N?平面AB1M,OM?平面AB1M
∴A1N∥平面AB1M.
(2)∵平面BB1C1C⊥平面ABC,而∠ABC=90°
∴AB⊥BC,AB?平面ABC
∴AB⊥平面BB1C
∵B1M?平面BB1C1C
∴AB⊥B1M.
(3)∵AB⊥平面BB1C1C
∴V=
1
3
×(
1
2
× 1×1×sin60°)×1=
3
12
點(diǎn)評:證明線面平行關(guān)鍵是在平面內(nèi)找到一條與已知直線平行的直線;證明線線垂直的關(guān)鍵是先把其中一條直線作為垂線另一條直線在一個平面內(nèi)通過證明線面垂直得到;求三棱錐的體積較難時(shí)應(yīng)該考慮是否換一個定點(diǎn)使其高與底面積都易求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=
2
時(shí),求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時(shí),求二面角C-A′B-P的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•武漢模擬)如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
2
a

(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年江蘇省南京市金陵中學(xué)高三數(shù)學(xué)綜合試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=時(shí),求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時(shí),求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2007年江蘇省南京市高考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

在斜三棱柱ABC-A′B′C′中,底面△ABC為正三角形,設(shè)AA′:AC=λ.頂點(diǎn)A′在底面ABC上的射影O是△ABC的中心,P為側(cè)棱CC′中點(diǎn),G為△PA′B′的重心.
(Ⅰ)求證:OG∥平面AA′B′B;
(Ⅱ)當(dāng)λ=時(shí),求證:平面A′B′P⊥平面BB′C′C;
(Ⅲ)當(dāng)λ=1時(shí),求二面角C-A′B-P的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年湖北省武漢市高三四月調(diào)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在斜三棱柱ABC-A'B'C'中,∠ABC=90°,則側(cè)面A'ACC'⊥側(cè)面ABC,又AA'和底面所成60°的角,且AA'=2a,AB=BC=
(1)求平面ABB'A'與底面ABC所成的角的正切值;
(2)求側(cè)面BB'C'C的面積.

查看答案和解析>>

同步練習(xí)冊答案