【題目】某工廠的一臺某型號機器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機器處于故障狀態(tài),則停機檢修.為了檢查機器工作狀態(tài)是否正常,工廠隨機統(tǒng)計了該機器以往正常工作狀態(tài)下生產(chǎn)的1000個產(chǎn)品的質(zhì)量指標值,得出如圖1所示頻率分布直方圖.由統(tǒng)計結(jié)果可以認為,這種產(chǎn)品的質(zhì)量指標值服從正態(tài)分布,其中近似為這1000個產(chǎn)品的質(zhì)量指標值的平均數(shù),近似為這1000個產(chǎn)品的質(zhì)量指標值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點值為代表).若產(chǎn)品的質(zhì)量指標值全部在之內(nèi),就認為機器處于正常狀態(tài),否則,認為機器處于故障狀態(tài).

1)下面是檢驗員在一天內(nèi)從該機器生產(chǎn)的產(chǎn)品中隨機抽取10件測得的質(zhì)量指標值:

29 45 55 63 67 73 78 87 93 113

請判斷該機器是否出現(xiàn)故障?

2)若機器出現(xiàn)故障,有2種檢修方案可供選擇:

方案一:加急檢修,檢修公司會在當天排除故障,費用為700元;

方案二:常規(guī)檢修,檢修公司會在七天內(nèi)的任意一天來排除故障,費用為200.

現(xiàn)需決策在機器出現(xiàn)故障時,該工廠選擇何種方案進行檢修,為此搜集檢修公司對該型號機器近100單常規(guī)檢修在第i2,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機器正常工作一天可收益200元,故障機器檢修當天不工作,若機器出現(xiàn)故障,該選擇哪種檢修方案?

附:,.

【答案】1)可判斷該機器處于故障狀態(tài);(2)選擇加急檢修更為適合

【解析】

1)由圖1可估計1000個產(chǎn)品的質(zhì)量指標值的平均數(shù)和方差,所以,,從而得到產(chǎn)品的質(zhì)量指標值允許落在的范圍為(28.87,111.13),由于抽取產(chǎn)品質(zhì)量指標值出現(xiàn)了113,不在(28.87,111.13)之內(nèi),故機器處于故障狀態(tài);
2)方案一:工廠需要支付檢修費和損失收益之和為700200900元;方案二:設(shè)損失收益為元,求出的可能值,然后由圖2可得出每個的取值所對應的概率,求出數(shù)學期望,可得工廠需要支付檢修費和損失收益之和,與900對比,即可得出結(jié)論.

1)由圖1可估計1000個產(chǎn)品質(zhì)量指標值的平均數(shù)和方差分別為

,

依題意知,,,

所以,

所以產(chǎn)品質(zhì)量指標值允許落在的范圍為,

又抽取產(chǎn)品質(zhì)量指標值出現(xiàn)了113,不在之內(nèi),

故可判斷該機器處于故障狀態(tài)

2)方案一:若安排加急檢修,工廠需要支付檢修費和損失收益之和為元;

方案二:若安排常規(guī)檢修,工廠需要要支付檢修費為200元,

設(shè)損失收益為X元,則X的可能取值為200,400600,8001000,1200,1400

X的分布列為:

X

200

400

600

800

1000

1200

1400

P

0.07

0.18

0.25

0.20

0.15

0.12

0.03

;

故需要支付檢修費和損失收益之和為元,

因為,所以當機器出現(xiàn)故障,選擇加急檢修更為適合.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知直線的參數(shù)方程為為參數(shù)).在以坐標原點為極點,軸的正半軸為極軸,且與直角坐標系長度單位相同的極坐標系中,曲線的極坐標方程是.

(1)求直線的普通方程與曲線的直角坐標方程;

(2)設(shè)點.若直與曲線相交于兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,曲線C1的參數(shù)方程為t為參數(shù)),曲線C2的參數(shù)方程為α為參數(shù)),以坐標原點為極點.x軸正半軸為極軸建立極坐標系.

(Ⅰ)求曲線C1的普通方程和曲線C2的極坐標方程;

(Ⅱ)射線與曲線C2交于O,P兩點,射線與曲線C1交于點Q,若△OPQ的面積為1,求|OP|的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù)f(x)若存在x0∈Rf(x0)x0成立,則稱x0f(x)的不動點.已知f(x)ax2(b1)xb1(a≠0)

(1)a1b=-2時,求函數(shù)f(x)的不動點;

(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;

(3)(2)的條件下,若yf(x)圖象上A,B兩點的橫坐標是函數(shù)f(x)的不動點,且AB兩點關(guān)于直線ykx對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由位同學組成四個宣傳小組,其中可回收物宣傳小組有位同學,其余三個宣傳小組各有位同學.現(xiàn)從這位同學中選派人到某小區(qū)進行宣傳活動,則每個宣傳小組至少選派人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和為,且滿足,,.

1)求數(shù)列{an}的通項公式;

2)記,.

①求Tn

②求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明每天從家步行去學校,有兩條路線可以選擇,第一條路線,需走天橋,不用等紅燈,平均用時910秒;第二條路線,要經(jīng)過兩個紅綠燈路口,如圖,A處為小明家,D處為學校,走路段240秒,在B處有一紅綠燈,紅燈時長120秒,綠燈時長30秒,走路段450秒,在C處也有一紅綠燈,紅燈時長100秒,綠燈時長50秒,走路段200.小明進行了60天的試驗,每天都選擇第二條路線,并記錄了在B處等待紅燈的時長,經(jīng)統(tǒng)計,60天中有48天在B處遇到紅燈,根據(jù)記錄的48天等待紅燈時長的數(shù)據(jù)繪制了下面的頻率分布直方圖.已知B處和C處的紅燈亮起的時刻恰好始終保持相同,且紅綠燈之間切換無時間間隔.

1)若小明選擇第二條路線,設(shè)當小明到達B處的時刻為B處紅燈亮起后的第x秒()時,小明在B處等待紅燈的時長為y秒,求y關(guān)于x的函數(shù)的解析式;

2)若小明選擇第二條路線,請估計小明在B處遇到紅燈的概率,并問小明是否可能在B處和C處都遇到紅燈;

3)若取區(qū)間中點作為該區(qū)間對應的等待紅燈的時長,以這兩條路線的平均用時作為決策依據(jù),小明應選擇哪一條路線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下圖是2020215日至32日武漢市新增新冠肺炎確診病例的折線統(tǒng)計圖.則下列說法不正確的是(

A.2020219日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)

B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低

C.2020219日至32日武漢市新增新冠肺炎確診病例低于400人的有8

D.2020215日到32日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】廠家在產(chǎn)品出廠前,需對產(chǎn)品做檢驗.廠家將一批產(chǎn)品發(fā)給商家時,商家按合同規(guī)定也需隨機抽取一定數(shù)量的產(chǎn)品做檢驗,以決定是否接收這批產(chǎn)品.

1)若廠家?guī)旆恐械拿考a(chǎn)品合格的概率為0.8,從中任意取出4件進行檢驗,求至少有1件是合格品的概率;

2)若廠家發(fā)給商家20件產(chǎn)品,其中有3件不合格.按合同規(guī)定該商家從中任取2件,都進行檢驗,只有2件都合格時才接收這批產(chǎn)品,否則拒收.求該商家拒收這批產(chǎn)品的概率.

查看答案和解析>>

同步練習冊答案