【題目】已知圓,設(shè)點(diǎn)為圓與軸負(fù)半軸的交點(diǎn),點(diǎn)為圓上一點(diǎn),且滿足的中點(diǎn)在軸上.
(1)當(dāng)變化時(shí),求點(diǎn)的軌跡方程;
(2)設(shè)點(diǎn)的軌跡為曲線,、為曲線上兩個(gè)不同的點(diǎn),且在、兩點(diǎn)處的切線的交點(diǎn)在直線上,證明:直線過定點(diǎn),并求此定點(diǎn)坐標(biāo).
【答案】(1);(2)證明見解析,定點(diǎn)坐標(biāo)為.
【解析】
(1)求得點(diǎn),設(shè)點(diǎn),求得線段的中點(diǎn),由結(jié)合平面向量數(shù)量積的坐標(biāo)運(yùn)算化簡(jiǎn)可求得點(diǎn)的軌跡方程;
(2)設(shè)、,設(shè)直線的方程為,利用導(dǎo)數(shù)求出曲線在點(diǎn)、的切線方程,并將兩切線方程聯(lián)立,求出交點(diǎn)的坐標(biāo),可得出,再將直線的方程與曲線的方程聯(lián)立,利用韋達(dá)定理可求得的值,進(jìn)而可求得直線所過定點(diǎn)的坐標(biāo).
(1)依題意,設(shè),則弦中點(diǎn),
由得,即;
(2)設(shè)、,
依題意可設(shè)拋物線在、兩點(diǎn)處的切線交點(diǎn)為,
設(shè)直線的方程為,對(duì)函數(shù)求導(dǎo)得,
所以,拋物線在點(diǎn)處的切線為,即,
拋物線在點(diǎn)處的切線為,即,
聯(lián)立,解得,所以,
聯(lián)立直線與曲線的方程得,消去得,
由韋達(dá)定理得,解得,
所以,直線的方程為,過定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求的最小值;
(2)若,討論的單調(diào)性;
(3)若,為在上的最小值,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱中,平面平面,為正三角形,為線段的中點(diǎn).
(1)證明:平面平面;
(2)若與平面所成角的大小為60°,,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為平行四邊形,底面,,,,.
(Ⅰ)求證:平面平面;
(Ⅱ)在側(cè)棱上是否存在點(diǎn)E,使與底面所成的角為45°?若存在,求的值,若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(s為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為,,直線與曲線C交于A,B兩點(diǎn).
(Ⅰ)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(Ⅱ)已知點(diǎn)P的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-5:不等式選講
已知函數(shù).
(Ⅰ)若,解不等式;
(Ⅱ)當(dāng)時(shí),函數(shù)的最小值為,求實(shí)數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓C:()的離心率為,且橢圓C的中心O關(guān)于直線的對(duì)稱點(diǎn)落在直線上.
(1)求橢圓C的方程;
(2)設(shè)P,M、N是橢圓C上關(guān)于x軸對(duì)稱的任意兩點(diǎn),連接交橢圓C于另一點(diǎn)E,求直線的斜率取值范圍,并證明直線與x軸相交于定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】年新型冠狀病毒疫情爆發(fā),貴州省教育廳號(hào)召全體學(xué)生“停課不停學(xué)”.自月日起,高三年級(jí)學(xué)生通過收看“陽光校園·空中黔課”進(jìn)行線上網(wǎng)絡(luò)學(xué)習(xí).為了檢測(cè)線上網(wǎng)絡(luò)學(xué)習(xí)效果,某中學(xué)隨機(jī)抽取名高三年級(jí)學(xué)生做“是否準(zhǔn)時(shí)提交作業(yè)”的問卷調(diào)查,并組織了一場(chǎng)線上測(cè)試,調(diào)查發(fā)現(xiàn)有名學(xué)生每天準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測(cè)試成績(jī)得頻率分布直方圖(如圖所示);另外名學(xué)生偶爾沒有準(zhǔn)時(shí)提交作業(yè),根據(jù)他們的線上測(cè)試成績(jī)得莖葉圖(如圖所示,單位:分)
(1)成績(jī)不低于分為等,低于分為非等.完成以下列聯(lián)表,并判斷是否有以上的把握認(rèn)為成績(jī)?nèi)〉?/span>等與每天準(zhǔn)時(shí)提交作業(yè)有關(guān)?
準(zhǔn)時(shí)提交作業(yè)與成績(jī)等次列聯(lián)表 | 單位:人 | ||
A等 | 非A等 | 合計(jì) | |
每天準(zhǔn)時(shí)提交作業(yè) | |||
偶爾沒有準(zhǔn)時(shí)提交作業(yè) | |||
合計(jì) |
(2)成績(jī)低于分為不合格,從這名學(xué)生里成績(jī)不合格的學(xué)生中再抽取人,其中每天準(zhǔn)時(shí)提交作業(yè)的學(xué)生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四面體ABCD中,△ABC和△BCD均是邊長(zhǎng)為1的等邊三角形,已知四面體ABCD的四個(gè)頂點(diǎn)都在同一球面上,且AD是該球的直徑,則四面體ABCD的體積為( )
A.B.C.D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com