:(1)在
y=
x2-
x-10中,令
y=0,得
x2-8
x-180=0.
解得
x=-10或
x=18,∴
A(18,0).····················································· 1分
在
y=
x2-
x-10中,令
x=0,得
y=-10.
∴
B(0,-10).································· 2分
∵
BC∥
x軸,∴點
C的縱坐標(biāo)為-10.
由-10=
x2-
x-10得
x=0或
x=8.
∴
C(8,-10).·································· 3分
∵
y=
x2-
x-10=
(
x-4)
2-
∴拋物線的頂點坐標(biāo)為(4,-
). 4分
(2)若四邊形
PQCA為平行四邊形,由于
QC∥
PA,故只要
QC=
PA即可.
∵
QC=
t,
PA=18-4
t,∴
t=18-4
t.
解得
t=
.·························································································· 6分
(3)設(shè)點
P運(yùn)動了
t秒,則
OP=4
t,
QC=
t,且0<
t<4.5,說明點
P在線段
OA上,且不與點
O,
A重合.
∵
QC∥
OP, ∴
=
=
=
=
.
同理
QC∥
AF,∴
=
=
=
,即
=
.
∴
AF=4
t=
OP.
∴
PF=
PA+
AF=
PA+
OP=18.································································· 8分
∴
S△PQF=
PF·
OB=
×18×10=90
∴△
PQF的面積總為定值90.································································· 9分
(4)設(shè)點
P運(yùn)動了
t秒,則
P(4
t,0),
F(18+4
t,0),
Q(8-
t,-10)
t∈(0,4.5).
∴
PQ2=(4
t-8+
t)
2+10
2=(5
t-8)
2+100
FQ2=(18+4
t-8+
t)
2+10
2=(5
t+10)
2+100.
①若
FP=
FQ,則18
2=(5
t+10)
2+100.
即25(
t+2)
2=224,(
t+2)
2=
.
∵0≤
t≤4.5,∴2≤
t+2≤6.5,∴
t+2=
=
.
∴
t=
-2.··················································································· 11分
②若
QP=
QF,則(5
t-8)
2+100=(5
t+10)
2+100.
即(5
t-8)
2=(5
t+10)
2,無0≤
t≤4.5的
t滿足.·································· 12分
③若
PQ=
PF,則(5
t-8)
2+100=18
2.
即(5
t-8)
2=224,由于
≈15,又0≤5
t≤22.5,
∴-8≤5
t-8≤14.5,而14.5
2=(
)
2=
<224.
故無0≤
t≤4.5的
t滿足此方程.·························································· 13分
注:也可解出
t=
<0或
t=
>4.5均不合題意,
故無0≤
t≤4.5的
t滿足此方程.
綜上所述,當(dāng)
t=
-2時,△
PQF為等腰三角形.·························· 14分