【題目】已知命題p:函數(shù)y=log0.5(x2+2x+a)的值域R,命題q:函數(shù)y=x2a5在(0,+∞)上是減函數(shù).若p或q為真命題,p且q為假命題,求實數(shù)a的取值范圍.

【答案】解:對于命題p:因其值域為R,故x2+2x+a>0不恒成立,所以△=4﹣4a≥0,∴a≤1,
對于命q:因其在(0,+∞)上是減函數(shù),
故5﹣2a>0,則a< ,
∵p或q為真命題,p且q為假命題,
∴p真q假或p假q真.
若p真q假,則 ,則a∈,
若p假q真,則 ,則1<a< ,
綜上可知,1<a< ,
故實數(shù)a的取值范圍為(1,
【解析】分別求出p,q為真時的a的范圍,根據(jù)p或q為真命題,p且q為假命題得到p,q一真一假,得到關(guān)于a的不等式組,解出即可.
【考點精析】解答此題的關(guān)鍵在于理解復(fù)合命題的真假的相關(guān)知識,掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復(fù)合命題的真假與F的真假相反;“p且q”形式復(fù)合命題當(dāng)P與q同為真時為真,其他情況時為假;“p或q”形式復(fù)合命題當(dāng)p與q同為假時為假,其他情況時為真.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行下面的程序框圖,則輸出的k值為(
A.﹣1
B.4
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=|ax﹣1|. (Ⅰ)若f(x)≤2的解集為[﹣6,2],求實數(shù)a的值;
(Ⅱ)當(dāng)a=2時,若存在x∈R,使得不等式f(2x+1)﹣f(x﹣1)≤7﹣3m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,外接圓半徑為1,且 = ,則△ABC面積的最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=lg(1﹣x2),集合A={x|y=f(x)},B={y|y=f(x)},則如圖中陰影部分表示的集合為(

A.[﹣1,0]
B.(﹣1,0)
C.(﹣∞,﹣1)∪[0,1)
D.(﹣∞,﹣1]∪(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)h(x)=ax3﹣1(a∈R),g(x)=lnx,f(x)=h(x)+3xg(x)(e為自然對數(shù)的底數(shù)).
(I)若f(x)圖象過點(1,﹣1),求f(x)的單調(diào)區(qū)間;
(II)若f(x)在區(qū)間( ,e)上有且只有一個極值點,求實數(shù)a的取值范圍;
(III)函數(shù)F(x)=(a﹣ )x3+ x2g(a)﹣h(x)﹣1,當(dāng)a>e 時,函數(shù)F(x)過點A(1,m)的切線至少有2條,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (x∈R).
(Ⅰ)求函數(shù)f(x)的最小正周期及單調(diào)遞減區(qū)間;
(Ⅱ)若 ,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax﹣lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=e2 , 當(dāng)x∈(0,e]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= 為奇函數(shù).
(1)則a=
(2)函數(shù)g(x)=f(x)﹣ 的值域為

查看答案和解析>>

同步練習(xí)冊答案