已知拋物線()上一點到其準(zhǔn)線的距離為.

(Ⅰ)求的值;
(Ⅱ)設(shè)拋物線上動點的橫坐標(biāo)為),過點的直線交于另一點,交軸于點(直線的斜率記作).過點的垂線交于另一點.若恰好是的切線,問是否為定值?若是,求出該定值;若不是,說明理由.
(Ⅰ),(Ⅱ)定值

試題分析:(Ⅰ)由拋物線方程得其準(zhǔn)線方程:,點到其準(zhǔn)線的距離即,解得,拋物線方程為:,將代入拋物線方程,解得.      
(Ⅱ)由題意知,過點的直線斜率不為
,當(dāng) 時, ,則.
聯(lián)立方程,消去,得 ,
解得,
,直線斜率為
,聯(lián)立方程
消去,得 ,
解得:,或,

所以,拋物線在點處切線斜率:,
于是拋物線在點處切線的方程是:
,①
將點的坐標(biāo)代入①,得 ,
因為,所以,故,
整理得,
為定值.
點評:第一問的求解采用拋物線定義:拋物線上的點到焦點的距離等于到準(zhǔn)線的距離,較簡單,第二問直線與拋物線相交為背景,常聯(lián)立方程組轉(zhuǎn)化,本題第二問計算量較大,學(xué)生在數(shù)據(jù)處理時可能出問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點為,點為拋物線上的動點,點為其準(zhǔn)線上的動點,當(dāng) 為等邊三角形時,則的外接圓的方程為(     )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

曲線C上任一點到定點(0,)的距離等于它到定直線的距離.
(1)求曲線C的方程;
(2)經(jīng)過P(1,2)作兩條不與坐標(biāo)軸垂直的直線分別交曲線C于A、B兩點,且,設(shè)M是AB中點,問是否存在一定點和一定直線,使得M到這個定點的距離與它到定直線的距離相等.若存在,求出這個定點坐標(biāo)和這條定直線的方程.若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線E:y2= 4x,點P(2,O).如圖所示,直線.過點P且與拋物線E交于A(xl,y1)、B( x2,y2)兩點,直線過點P且與拋物線E交于C(x3, y3)、D(x4,y4)兩點.過點P作x軸的垂線,與線段AC和BD分別交于點M、N.

(I)求y1y2的值;
(Ⅱ)求訌:|PM|="|" PN|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線上的兩點、到焦點的距離之和是,則線段的中點到軸的距離是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過拋物線的焦點作直線交拋物線于兩點,若,則直線的傾斜角。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線的焦點為,點在拋物線上,且,過弦中點作準(zhǔn)線的垂線,垂足為,則的最大值為_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知拋物線的頂點在原點,焦點在y軸上,拋物線上的點到焦點的距離等于5,
則m
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點到準(zhǔn)線的距離為(   )
A.1B.C.D.

查看答案和解析>>

同步練習(xí)冊答案