(本小題滿分13分)
某設(shè)計(jì)部門承接一產(chǎn)品包裝盒的設(shè)計(jì)(如圖所示),客戶除了要求、邊的長分別為和外,還特別要求包裝盒必需滿足:①平面平面;②平面與平面所成的二面角不小于;③包裝盒的體積盡可能大。
若設(shè)計(jì)部門設(shè)計(jì)出的樣品滿足:與均為直角且長,矩形的一邊長為,請你判斷該包裝盒的設(shè)計(jì)是否能符合客戶的要求?說明理由.
解:該包裝盒的樣品設(shè)計(jì)符合客戶的要求。
(1)以下證明滿足條件①的要求.
∵四邊形為矩形,與均為直角,
∴且 ∴面,
在矩形中,∥
∴面∴面面 ………………………………………………3分
(2)以下證明滿足條件②、③的要求.
∵矩形的一邊長為,
而直角三角形的斜邊長為,∴
設(shè),則,
以為原點(diǎn),分別為軸的正半軸建立空間直角坐標(biāo)系,
則,,,
設(shè)面的一個(gè)法向量為,,
∵
∴,取,則………………………6分
而面的一個(gè)法向量為,
設(shè)面與面所成的二面角為,則,
∴, ∴,
即當(dāng)時(shí),面與面所成的二面角不小于. ……………………………8分
又, 由與均為直角知,面,該包裝盒可視為四棱錐,
當(dāng)且僅當(dāng),即時(shí),的體積最大,最大值為. …………………………………………………………………………………12分
而,可以滿足面與面所成的二面角不小于的要求,
綜上,該包裝盒的設(shè)計(jì)符合客戶的要求。 ………………………………………13分
解析
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
切線與圓切于點(diǎn),圓內(nèi)有一點(diǎn)滿足,的平分線交圓于,,延長交圓于,延長交圓于,連接.
(Ⅰ)證明://;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分10分)選修41:幾何證明選講
如圖,相交于A、B兩點(diǎn),AB是的直徑,過A點(diǎn)作的切線交于點(diǎn)E,并與BO1的延長線交于點(diǎn)P,PB分別與、交于C,D兩點(diǎn).
求證:(1)PA·PD=PE·PC; (2)AD=AE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
請考生在(22)、(23)、(24)三題中任選一題作答,如果多答,則按做的第一題記分.作答時(shí)用2B鉛筆在答題卡上把所選題目對應(yīng)題號右側(cè)的方框涂黑.
(22)(本小題滿分10分)選修4—1:幾何證明選講。如圖,⊙O是△的外接圓,D
是的中點(diǎn),BD交AC于E.
(Ⅰ)求證:CD=DE·DB;
(Ⅱ)若,O到AC的距離為1,求⊙O的半徑.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
((本小題滿分10分)選修4—1:幾何證明選講
如圖,已知AD是的外角的平分線,交BC的延長線于點(diǎn)D,延長DA交的外接圓于點(diǎn)F,連結(jié)FB、FC
(I)求證:FB=FC;
(II)求證:FB2=FA·FD;
(III)若AB是外接圓的直徑,求AD的長。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)已知:如右圖,在等腰梯形ABCD中,AD∥BC,AB=DC,過點(diǎn)D作AC的平行線DE,交BA的延長線于點(diǎn)E.
求證:(1)△ABC≌△DCB
(2)DE·DC=AE·BD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com