已知f(x)=
cosπx,x<1
f(x-1)-1,x>1
f(
1
3
)+f(
4
3
)
的值為( 。
分析:由于
1
3
<1,可直接求出f(
1
3
),對(duì)于
4
3
>1,用表達(dá)式的定義得f(
4
3
-1)-1=f(
1
3
)-1=-
1
2
,從而得出要求的答案.
解答:解:∵
1
3
<1,∴f(
1
3
)=cos
π
3
=
1
2

而f(
4
3
)=f(
4
3
-1)-1=f(
1
3
)-1=
1
2
-1=-
1
2
;
f(
1
3
)+f(
4
3
)
=
1
2
-
1
2
=0.
故選C.
點(diǎn)評(píng):本題考查了對(duì)分段函數(shù)解析式的理解,并用其解函數(shù)值,屬于基礎(chǔ)題.注意解題時(shí)的處理:分段函數(shù)分段討論,最后綜合求各部分的情況得到答案.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=cos(ωx+
π
3
),(ω>0)
的圖象與y=1的圖象的兩相鄰交點(diǎn)間的距離為π,要得到y(tǒng)=f(x)的圖象,只須把y=sinωx的圖象(  )
A、向左平移
5
12
π
個(gè)單位
B、向右平移
5
12
π
個(gè)單位
C、向左平移
11
12
π
個(gè)單位
D、向右平移
11
12
π
個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
cos(πx)           x≤0 
f(x-1)+1     x>0
,則f(
4
3
)+f(-
4
3
)
的值為( 。
A、-2B、-1C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
-cosπx      x>0
f(x+1)+1  x≤0
,則f(
4
3
)+f(-
3
4
)的值等于
3-
2
2
3-
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=(
cosα
sinβ
)x+(
cosβ
sinα
)x (x>0)
,α,  β∈(0,  
π
2
)
,若f(x)<2,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
cosπx(x<1)
f(x-1)-1(x>1)
f(
1
3
)+f(
4
3
)
=
0
0

查看答案和解析>>

同步練習(xí)冊(cè)答案