(文)數(shù)列{an}的前n項和為Sn,a1=1,Sn=2an-1.
(1)求數(shù)列{an}的通項an;
(2)求數(shù)列{nan}的前n項和Tn
(1)∵Sn=2an-1,
∴Sn+1=2an+1-1,
∴an+1=2an+1-2an
即an+1=2an,
∵a1=1,
∴{an}是首項為1,公比為2的等比數(shù)列,
∴an=2n-1;
(2)Tn=1×20+2×21+3×22+…+n×2n-1①,
2Tn=1×21+2×22+…+(n-1)×2n-1+n×2n②,
①-②得:-Tn=(20+21+22+…+2n-1)-n×2n
=2n-1-n×2n
=-(n-1)2n-1,
∴Tn=(n-1)×2n+1.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)列{an}的前n項和為Sn,a1=2,Sn=
1
2
an+1-1
(n∈N*).
(Ⅰ)求a2,a3;
(Ⅱ)求數(shù)列{an}的通項an;
(Ⅲ)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

數(shù)列{an}滿足an+an+1=
1
2
,a2=1,Sn為前n項和,則S21的值為( 。
A.4B.4.5C.5D.5.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在數(shù)列{an}中,a1=2,an+1=2an+n,n∈N*
(1)證明數(shù)列{an+n+1}是等比數(shù)列;
(2)求an的表達(dá)式;
(3)求數(shù)列{an}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(1,
1
3
)是函數(shù)f(x)=ax(a>0且a≠1)的圖象上一點,等比數(shù)列{an}的前n項和為f(n)-c,數(shù)列{bn}(bn>0)的首項為c,且前n項和Sn滿足Sn-Sn-1=
Sn
+
Sn-1
(n≥2)
(Ⅰ)求數(shù)列{an}和{bn}的通項公式
(Ⅱ)求數(shù)列{
1
bnbn+1
}前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知數(shù)列{an}的前n項和Sn=
n+n2
2k-1
(n∈N*,k是與n無關(guān)的正整數(shù)).
(1)求數(shù)列{an}的通項公式,并證明數(shù)列{an}是等差數(shù)列;
(2)設(shè)數(shù)列{an}滿足不等式:|a1-1|+|a2-1|+…|a2k-1-1|+|a2k-1|≤6,求所有這樣的k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)項數(shù)均為k(k≥2,k∈N*)的數(shù)列{an}、{bn}、{cn}前n項的和分別為Sn、Tn、Un.已知:an-bn=2n(1≤n≤k,n∈N*),且集合{a1,a2,…,ak,b1,b2,…,bk}={2,4,6,…,4k-2,4k}.
(1)已知Un=2n+2n,求數(shù)列{cn}的通項公式;
(2)若k=4,求S4和T4的值,并寫出兩對符合題意的數(shù)列{an}、{bn};
(3)對于固定的k,求證:符合條件的數(shù)列對({an},{bn})有偶數(shù)對.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知數(shù)列的前項和為,且等于(    )
A.4B.2C.1D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在數(shù)列1,1,2,3,5,8,,21,34,55,…中,等于(  )
A.11B.12C.13D.14

查看答案和解析>>

同步練習(xí)冊答案