如圖,已知四棱錐P—ABCD的底面為等腰梯形,AB∥CD,AC⊥BD,垂足為H,PH是四棱錐的高,E為AD的中點(diǎn).

(1)證明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直線PA與平面PEH所成角的正弦值.
(1)見(jiàn)解析   (2)
(1)證明 以H為原點(diǎn),HA,HB,HP分別為x,y,z軸,線段HA的長(zhǎng)為單位長(zhǎng),建立空間直角坐標(biāo)系如圖,則A(1,0,0),B(0,1,0),
設(shè)C(m,0,0),P(0,0,n)(m<0,n>0),
則D(0,m,0),E(,0).
可得=(,-n),=(m,-1,0).
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050538685394.png" style="vertical-align:middle;" />·+0=0,
所以PE⊥BC.

(2)解 由已知條件可得m=-,n=1,
故C(-,0,0),D(0,-,0),
E(,-,0),P(0,0,1),
設(shè)n=(x,y,z)為平面PEH的法向量,
,
因此可以取n=(1,,0),
=(1,0,-1).
可得|cos〈,n〉|=
所以直線PA與平面PEH所成角的正弦值為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱中,側(cè)面為菱形,的中點(diǎn)為,且平面.

證明:
,求三棱柱的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2011•山東)如圖,在四棱臺(tái)ABCD﹣A1B1C1D1中,D1D⊥平面ABCD,底面ABCD是平行四邊形,AB=2AD,AD=A1B1,∠BAD=60°.
(1)證明:AA1⊥BD;
(2)證明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,四棱錐中, ,,側(cè)面為等邊三角形..

(1)證明:
(2)求AB與平面SBC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分)

如圖,在三棱柱中,底面,E、F分別是棱的中點(diǎn).
(1)求證:AB⊥平面AA1 C1C;
(2)若線段上的點(diǎn)滿足平面//平面,試確定點(diǎn)的位置,并說(shuō)明理由;
(3)證明:⊥A1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,三棱柱的底面是邊長(zhǎng)為2的正三角形,且側(cè)棱垂直于底面,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)。

(1)求證:平面;
(2)求二面角的大;
(3)求直線與平面所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

[2013·安徽高考]在下列命題中,不是公理的是(  )
A.平行于同一個(gè)平面的兩個(gè)平面相互平行
B.過(guò)不在同一條直線上的三點(diǎn),有且只有一個(gè)平面
C.如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線上所有的點(diǎn)都在此平面內(nèi)
D.如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(2013•浙江)在空間中,過(guò)點(diǎn)A作平面π的垂線,垂足為B,記B=fπ(A).設(shè)α,β是兩個(gè)不同的平面,對(duì)空間任意一點(diǎn)P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,則( 。
A.平面α與平面β垂直
B.平面α與平面β所成的(銳)二面角為45°
C.平面α與平面β平行
D.平面α與平面β所成的(銳)二面角為60°

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,正方體的棱長(zhǎng)為a,M、N分別為和AC上的點(diǎn),,則MN與平面的位置關(guān)系是(    )
A.相交B.平行C.垂直D.不能確定

查看答案和解析>>

同步練習(xí)冊(cè)答案