8分)已知點A(-4,-5),B(6,-1),求以線段AB為直徑的圓的方程。
科目:高中數(shù)學 來源: 題型:
A、
| ||
B、1,8 | ||
C、-
| ||
D、-1,-8 |
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年天津市高二上學期期中考試數(shù)學試卷 題型:解答題
8分)已知點A(-4,-5),B(6,-1),求以線段AB為直徑的圓的方程。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知點是直角坐標平面內(nèi)的動點,點到直線的距離為,到點的距離為,且.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內(nèi)、圓上、圓外等情況);
(3)記,,(A、B、是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線、點、曲線C:,則使等式成立的的值仍保持不變.請給出你的判斷 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本題滿分18分)本題共有3個小題,第1小題滿分4分,第2小題滿分6分,第3小題滿分8分.
已知點是直角坐標平面內(nèi)的動點,點到直線的距離為,到點的距離為,且.
(1)求動點P所在曲線C的方程;
(2)直線過點F且與曲線C交于不同兩點A、B(點A或B不在x軸上),分別過A、B點作直線的垂線,對應的垂足分別為,試判斷點F與以線段為直徑的圓的位置關系(指在圓內(nèi)、圓上、圓外等情況);
(3)記,,(A、B、是(2)中的點),問是否存在實數(shù),使成立.若存在,求出的值;若不存在,請說明理由.
進一步思考問題:若上述問題中直線、點、曲線C:,則使等式成立的的值仍保持不變.請給出你的判斷 (填寫“不正確”或“正確”)(限于時間,這里不需要舉反例,或證明).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com