【題目】高中生在被問及“家,朋友聚集的地方,個人空間”三個場所中“感到最幸福的場所在哪里?”這個問題時,從洛陽的高中生中,隨機抽取了55人,從上海的高中生中隨機抽取了45人進行答題.洛陽高中生答題情況是:選擇家的占、選擇朋友聚集的地方的占、選擇個人空間的占.上海高中生答題情況是:選擇朋友聚集的地方的占、選擇家的占、選擇個人空間的占.
(1)請根據(jù)以上調查結果將下面列聯(lián)表補充完整,并判斷能否有的把握認為“戀家(在家里感到最幸福)”與城市有關:
在家里最幸福 | 在其它場所最幸福 | 合計 | |
洛陽高中生 | |||
上海高中生 | |||
合計 |
(2) 從被調查的不“戀家”的上海學生中,用分層抽樣的方法選出4人接受進一步調查,從被選出的4 人中隨機抽取2人到洛陽交流學習,求這2人中含有在“個人空間”感到幸福的學生的概率.
附:,其中d.
【答案】(1)見解析;(2).
【解析】分析:第一問就需要根據(jù)題意,將對應的數(shù)據(jù)填入表中的相應位置,之后應用公式求得觀測值,與表中所給的臨界值比較,得出結果;第二問將所有的基本事件和滿足條件的基本事件都寫出來,之后借助于古典概型概率公式求得結果.
詳解:(1)由已知得,
在家里最幸福 | 在其它場所最幸福 | 合計 | |
洛陽高中生 | 22 | 33 | 55 |
上海高中生 | 9 | 36 | 45 |
合計 | 31 | 69 | 100 |
∴,
∴有的把握認為“戀家”與城市有關.
(2)用分層抽樣的方法抽出4 人.其中在“朋友聚焦的地方”感到幸福的有3人,在“個人空間”感到幸福的有1人,分別設為;
∵ ,
∴,
設“含有在“個人空間”感到幸福的學生”為事件,
,∴,
則所求的概率為.
科目:高中數(shù)學 來源: 題型:
【題目】某小組共有10人,利用假期參加義工活動,已知參加義工活動1次的有2人、2次的有4人、3次的有4人.現(xiàn)從這10人中隨機選出2人作為該組代表參加座談會.
(I)設為事件“選出的2人參加義工活動次數(shù)之和為4”,求事件發(fā)生的概率;
(II)設為選出的2人參加義工活動次數(shù)之差的絕對值,求隨機變量的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列五個結論,其中正確的結論是( )
A.函數(shù)的最大值為
B.已知函數(shù)(且)在上是減函數(shù)則a的取值范圍是
C.在同一直角坐標系中,函數(shù)與的圖象關于y軸對稱
D.在同一直角坐標系中,函數(shù)與的圖象關于直線對稱
E.已知定義在R上的奇函數(shù)在內有1010個零點,則函數(shù)的零點個數(shù)為2021
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工科院校對A、B兩個專業(yè)的男、女生人數(shù)進行調查統(tǒng)計,得到以下表格:
專業(yè)A | 專業(yè)B | 合計 | |
女生 | 12 | ||
男生 | 46 | 84 | |
合計 | 50 | 100 |
如果認為工科院校中“性別”與“專業(yè)”有關,那么犯錯誤的概率不會超過( )
注:
P(x2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. 0.005B. 0.01C. 0.025D. 0.05
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,下表是該地一建設銀行連續(xù)五年的儲蓄存款(年底余額),如下表1:
年份x | 2011 | 2012 | 2013 | 2014 | 2015 |
儲蓄存款y(千億元) | 5 | 6 | 7 | 8 | 10 |
為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理, 得到下表2:
時間代號t | 1 | 2 | 3 | 4 | 5 |
z | 0 | 1 | 2 | 3 | 5 |
(Ⅰ)求z關于t的線性回歸方程;
(Ⅱ)用所求回歸方程預測到2020年年底,該地儲蓄存款額可達多少?
(附:對于線性回歸方程,其中)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)是定義在上的函數(shù),①若存在,使得成立,則函數(shù)在上單調遞增。②若存在,使得成立,則函數(shù)在上不可能單調遞減. ③若存在對于任意都有成立,則函數(shù)在上遞增。④對于任意的,都有成立,則函數(shù)在上單調遞減。
則以上真命題的個數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,已知直線l:xy2=0,拋物線C:y2=2px(p>0).
(1)若直線l過拋物線C的焦點,求拋物線C的方程;
(2)已知拋物線C上存在關于直線l對稱的相異兩點P和Q.
①求證:線段PQ的中點坐標為;
②求p的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com