已知函數(shù)f(x)=ax3+bx2-3x(a,b∈R)在點(1,f(1))處的切線方程為y+2=0.
(1)求函數(shù)f(x)的解析式;
(2)若對于區(qū)間[-2,2]上任意兩個自變量的值x1,x2都有|f(x1)-f(x2)|≤c,求實數(shù)c的最小值;
(3)若過點M(2,m)(m≠2)可作曲線y=f(x)的三條切線,求實數(shù)m的取值范圍.
分析:(1)由題意,利用導(dǎo)函數(shù)的幾何含義及切點的實質(zhì)建立a,b的方程,然后求解即可;
(2)由題意,對于定義域內(nèi)任意自變量都使得|f(x1)-f(x2)|≤c,可以轉(zhuǎn)化為求函數(shù)在定義域下的最值即可得解;
(3)由題意,若過點M(2,m)(m≠2)可作曲線y=f(x)的三條切線,等價與函數(shù)在切點處導(dǎo)函數(shù)值等于切線的斜率這一方程有3解.
解答:解:(1)f'(x)=3ax2+2bx-3.(2分)
根據(jù)題意,得
f(1)=-2
f′(1)=0
a+b-3=-2
3a+2b-3=0
解得
a=1
b=0

所以f(x)=x3-3x.
(2)令f'(x)=0,即3x2-3=0.得x=±1.
當(dāng)x∈(-∞,-1)時,f(x)>0,函數(shù)f(x)在此區(qū)間單調(diào)遞增;
當(dāng)x∈(-1,1)時,f(x)<0,函數(shù)f(x)在此區(qū)間單調(diào)遞減
因為f(-1)=2,f(1)=-2,
所以當(dāng)x∈[-2,2]時,f(x)max=2,f(x)min=-2.
則對于區(qū)間[-2,2]上任意兩個自變量的值x1,x2,都有|f(x1)-f(x2)|≤|f(x)max-f(x)min|=4,所以c≥4.
所以c的最小值為4.
(3)因為點M(2,m)(m≠2)不在曲線y=f(x)上,所以可設(shè)切點為(x0,y0).
則y0=x03-3x0
因為f'(x0)=3x02-3,所以切線的斜率為3x02-3.
則3x02-3=
x
3
0
-3x0-m
x0-2

即2x03-6x02+6+m=0.
因為過點M(2,m)(m≠2)可作曲線y=f(x)的三條切線,
所以方程2x03-6x02+6+m=0有三個不同的實數(shù)解.
所以函數(shù)g(x)=2x3-6x2+6+m有三個不同的零點.
則g'(x)=6x2-12x.令g'(x)=0,則x=0或x=2.
當(dāng)x∈(-∞,0)時,g(x)>0,函數(shù)g(x)在此區(qū)間單調(diào)遞增;當(dāng)x∈(0,2)時,g(x)<0,函數(shù)g(x)在此區(qū)間單調(diào)遞減;
所以,函數(shù)g(x)在x=0處取極大值,在x=2處取極小值,有方程與函數(shù)的關(guān)系知要滿足題意必須滿足:
g(0)>0
g(2)<0
,即
6+m>0
-2+m<0
,解得-6<m<2.
點評:(1)此題重點考查了導(dǎo)數(shù)的幾何含義及函數(shù)切點的定義,還考查了數(shù)學(xué)中重要的方程的思想;
(2)此題重點考查了數(shù)學(xué)中等價轉(zhuǎn)化的思想把題意最總轉(zhuǎn)化為求函數(shù)在定義域下的最值;
(3)此題重點考查了數(shù)學(xué)中導(dǎo)數(shù)的幾何含義,還考查了函數(shù)解的個數(shù)與相應(yīng)方程的解的個數(shù)的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點的連線的斜率,否存在實數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點,則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案