在平面直角坐標系中,原點為,拋物線的方程為,線段是拋物線的一條動弦.
(1)求拋物線的準線方程和焦點坐標;
(2)若,求證:直線恒過定點;
(3)當時,設圓,若存在且僅存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍?

(1)準線方程:,焦點坐標;(2)證明見解析;(3).

解析試題分析:(1)根據(jù)拋物線標準方程確定焦點在哪個軸上及開口方向,焦點為,準線方程為;(2)本題實質是直線與拋物線相交問題,一般是設直線方程為,與拋物線方程聯(lián)立方程組,消去可得,再設,則有,,而,把剛才求出的代入可得的關系,本題中求得為常數(shù),因此直線A一定過定點;(3)由(2)利用可求出的關系式,
,則,而直線與圓相切,則圓心到直線的距離等于圓的半徑,即,由題意,作為關于的方程,此方程只有兩解,設,則有,由于時是減函數(shù),且,即函數(shù)時遞減,在時遞增,因此為了保證有兩解,即只有一解,故要求.
試題解析:(1)準線方程:    +2分   焦點坐標:   +4分
(2)設直線方程為 ,
 得        +6分
      +8分
  直線 過定點(0,2)   +9分
(3)      +11分
  +12分     令
  當時, 單調(diào)遞減,  +13分
時, 單調(diào)遞增,   +14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖5,為坐標原點,雙曲線和橢圓均過點,且以的兩個頂點和的兩個焦點為頂點的四邊形是面積為2的正方形.
(1)求的方程;
(2)是否存在直線,使得交于兩點,與只有一個公共點,且?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知雙曲線的兩個焦點為、在雙曲線C上.
(1)求雙曲線C的方程;
(2)記O為坐標原點,過點Q (0,2)的直線l與雙曲線C相交于不同的兩點E、F,若△OEF的面積為求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知橢圓的左、右焦點分別焦距為,且與雙曲線共頂點.為橢圓上一點,直線交橢圓于另一點
(1)求橢圓的方程;
(2)若點的坐標為,求過、、三點的圓的方程;
(3)若,且,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的一個焦點為,且離心率為
(1)求橢圓方程;
(2)斜率為的直線過點,且與橢圓交于兩點,為直線上的一點,若△為等邊三角形,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓C:( )的離心率為,點(1,)在橢圓C上.
(1)求橢圓C的方程;
(2)若橢圓C的兩條切線交于點M(4,),其中,切點分別是A、B,試利用結論:在橢圓上的點()處的橢圓切線方程是,證明直線AB恒過橢圓的右焦點
(3)試探究的值是否恒為常數(shù),若是,求出此常數(shù);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知A、B為拋物線C:y2 = 4x上的兩個動點,點A在第一象限,點B在第四象限l1、l2分別過點A、B且與拋物線C相切,P為l1、l2的交點.
(1)若直線AB過拋物線C的焦點F,求證:動點P在一條定直線上,并求此直線方程;
(2)設C、D為直線l1、l2與直線x = 4的交點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的中心在原點,焦點在軸上,離心率為,它的一個焦點恰好與拋物線的焦點重合.
求橢圓的方程;
設橢圓的上頂點為,過點作橢圓的兩條動弦,若直線斜率之積為,直線是否一定經(jīng)過一定點?若經(jīng)過,求出該定點坐標;若不經(jīng)過,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知圓E ,點,P是圓E上任意一點.線段PF的垂直平分線和半徑PE相交于Q.
(1)求動點Q的軌跡的方程;
(2)點,,點G是軌跡上的一個動點,直線AG與直線相交于點D,試判斷以線段BD為直徑的圓與直線GF的位置關系,并證明你的結論.

查看答案和解析>>

同步練習冊答案