在平面直角坐標(biāo)系xOy中,設(shè)點P(x,y),M(x,-4)以線段PM為直徑的圓經(jīng)過原點O.
(1)求動點P的軌跡W的方程;
(2)過點E(0,-4)的直線l與軌跡W交于兩點A,B,點A關(guān)于y軸的對稱點為A,試判斷直線AB是否恒過一定點,并證明你的結(jié)論.

解:(1)由題意可得OP⊥OM,所以,即(x,y)•(x,-4)=0
即x2-4y=0,即動點P的軌跡w的方程為x2=4y
(2)設(shè)直線l的方程為y=kx-4,A(x1,y1),B(x2,y2),則A′(-x1,y1).
消y整理得x2-4kx+16=0
則x1+x2=4k,x1x2=16
直線


,所以,直線A′B恒過定點(0,4).
分析:(1)根據(jù)點P(x,y),M(x,-4)以線段PM為直徑的圓經(jīng)過原點O,可知OP⊥OM,所以,即(x,y)•(x,-4)=0,化簡可得動點P的軌跡W的方程;
(2)直線l與軌跡W的方程聯(lián)立,進而可求直線AB的方程,由此,可判斷是否恒過一定點
點評:本題以軌跡為載體,考查曲線方程,考查直線與曲線的位置關(guān)系,同時考查直線恒過定點問題,有一定的綜合性.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,設(shè)點F(1,0),直線l:x=-1,點P在直線l上移動,R是線段PF與y軸的交點,RQ⊥FP,PQ⊥l.
(1)求動點Q的軌跡的方程;
(2)記Q的軌跡的方程為E,過點F作兩條互相垂直的曲線E的弦AB、CD,設(shè)AB、CD的中點分別為M,N.求證:直線MN必過定點R(3,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,設(shè)點P(x1,y1)、Q(x2,y2),定義:d(P,Q)=|x1-x2|+|y1-y2|. 已知點B(1,0),點M為直線x-2y+2=0上的動點,則使d(B,M)取最小值時點M的坐標(biāo)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xoy中,設(shè)點F(
1
2
,0)
,直線l:x=-
1
2
,點P在直線l上移動,R是線段PF與y軸的交點,RQ⊥FP,PQ⊥l.
( I) 求動點Q的軌跡的方程C;
( II) 設(shè)圓M過A(1,0),且圓心M在曲線C上,設(shè)圓M過A(1,0),且圓心M在曲線C上,TS是圓M在y軸上截得的弦,當(dāng)M運動時弦長|TS|是否為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•威海二模)如圖,在平面直角坐標(biāo)系xoy中,設(shè)點F(0,p)(p>0),直線l:y=-p,點p在直線l上移動,R是線段PF與x軸的交點,過R、P分別作直線l1、l2,使l1⊥PF,l2⊥l l1∩l2=Q.
(Ⅰ)求動點Q的軌跡C的方程;
(Ⅱ)在直線l上任取一點M做曲線C的兩條切線,設(shè)切點為A、B,求證:直線AB恒過一定點;
(Ⅲ)對(Ⅱ)求證:當(dāng)直線MA,MF,MB的斜率存在時,直線MA,MF,MB的斜率的倒數(shù)成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•海淀區(qū)二模)在平面直角坐標(biāo)系xOy中,設(shè)點P(x,y),M(x,-4)以線段PM為直徑的圓經(jīng)過原點O.
(1)求動點P的軌跡W的方程;
(2)過點E(0,-4)的直線l與軌跡W交于兩點A,B,點A關(guān)于y軸的對稱點為A,試判斷直線AB是否恒過一定點,并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊答案