(本小題滿分14分)
已知?jiǎng)訄AP(圓心為點(diǎn)P)過定點(diǎn)A(1,0),且與直線相切。記動(dòng)點(diǎn)P的軌跡為C。
(Ⅰ)求軌跡C的方程;
(Ⅱ)設(shè)過點(diǎn)P的直線l與曲線C相切,且與直線相交于點(diǎn)Q。試研究:在x軸上是否存在定點(diǎn)M,使得以PQ為直徑的圓恒過點(diǎn)M?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說明理由。
(Ⅰ)(Ⅱ)x軸上存在定點(diǎn)M(1,0),使得以PQ為直徑的圓恒過點(diǎn)M

試題分析:(Ⅰ)因?yàn)閯?dòng)圓P過定點(diǎn)A(1,0),且與直線x=-1相切,
所以圓心P到點(diǎn)A(1,0)的距離與到直線x=-1的距離相等。
根據(jù)拋物線定義,知?jiǎng)狱c(diǎn)P的軌跡為拋物線,且方程為C:。       4分
(Ⅱ)設(shè)直線l的方程為,(易知斜率不存在的直線不符合要求)
,消去y得
由題意,得k≠0,且,化簡(jiǎn)得km=1。       6分
設(shè)直線l與曲線C相切的切點(diǎn)P(x0,y0),

所以
。                                    8分
若取k=1,m=1,此時(shí)P(1,2),Q(-1,0),以PQ為直徑的圓為,交x軸于點(diǎn)M1(1,0),M2(-1,0);
若取,此時(shí)以PQ為直徑的圓為
,交x軸于點(diǎn)M3(1,0),M4。
所以若符合條件的點(diǎn)M存在,則點(diǎn)M的坐標(biāo)必為(1,0)。(即為點(diǎn)A)     10分
以下證明M(1,0)就是滿足條件的點(diǎn)。
因?yàn)镸的坐標(biāo)為(1,0),
所以,                                11分
從而,
故恒有,
即在x軸上存在定點(diǎn)M(1,0),使得以PQ為直徑的圓恒過點(diǎn)M。          14分
點(diǎn)評(píng):第一問用定義法求動(dòng)點(diǎn)的軌跡方程是圓錐曲線題目經(jīng)常出現(xiàn)的類型,第二問證明動(dòng)圓過定點(diǎn)先通過兩個(gè)特殊圓找到過的定點(diǎn),進(jìn)而證明此點(diǎn)在任意的以PQ為直徑的圓上
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知P為拋物線上一個(gè)動(dòng)點(diǎn),Q為圓上一個(gè)動(dòng)點(diǎn),那么點(diǎn)P到點(diǎn)Q的距離與點(diǎn)P到軸距離之和最小值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線C:(a>0,b>0)的左、右焦點(diǎn),過F1的直線的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF2 | : | AF2 |=3:4 : 5,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,已知橢圓的左、右準(zhǔn)線分別為,且分別交軸于兩點(diǎn),從上一點(diǎn)發(fā)出一條光線經(jīng)過橢圓的左焦點(diǎn)軸反射后與交于點(diǎn),若,且,則橢圓的離心率等于        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線的一條漸近線與直線垂直,則曲線的離心率等于             。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知為坐標(biāo)原點(diǎn),點(diǎn)分別在軸上運(yùn)動(dòng),且=8,動(dòng)點(diǎn)滿足 =,設(shè)點(diǎn)的軌跡為曲線,定點(diǎn)為直線交曲線于另外一點(diǎn)
(1)求曲線的方程;
(2)求 面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1),C(x2,y2)滿足條件 |F2A|、|F2B|、|F2C|成等差數(shù)列(1)求該弦橢圓的方程;(2)求弦AC中點(diǎn)的橫坐標(biāo);(3)設(shè)弦AC的垂直平分線的方程為y=kx+m,求m的取值范圍 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,F(xiàn)1,F(xiàn)2是雙曲線的左、右焦點(diǎn),過F1的直線l與C的左、右兩支分別交于A,B兩點(diǎn).若|AB|:|BF2|:|AF2|=3:4:5,則雙曲線的離心率為
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線被曲線截得的弦長(zhǎng)為           ;

查看答案和解析>>

同步練習(xí)冊(cè)答案