已知過點A(0,4)的直線l與以F為焦點的拋物線C:x2=py相切于點T(-4,yo);中心在坐標原點,一個焦點為F的橢圓與直線l有公共點.
(1)求直線l的方程和焦點F的坐標;
(2)求當橢圓的離心率最大時橢圓的方程;
(3)設點M(x1,yl)是拋物線C上任意一點,D(0,-2)為定點,是否存在垂直于y軸的直線l′被以MD為直徑的圓截得的弦長為定值?請說明理由.
【答案】分析:(1)求導函數(shù),利用過點A(0,4)的直線l與以F為焦點的拋物線C:x2=py相切于點T(-4,yo),即可求得直線l的方程和焦點F的坐標;
(2)先確定,從而當e最大時,a取得最小,即在直線l上找一點P,使得|PF1|+|PF2|最小,求出F2(0,-1)關于2x-y+4=0對稱點的坐標,即可求橢圓方程;
(3)假設l′存在為y=b,求出以MD為直徑的圓N的圓心坐標,求出半徑為r、N到直線l′的距離,從而可計算弦長,即可得到結論.
解答:解:(1)∵,∴,∴l(xiāng):
∵直線l過點A(0,4),∴,∴p=-4
∴l(xiāng)的方程為2x-y+4=0,焦點F的坐標為(0,-1)…(4分)
(2)設橢圓為=1(a>1),F(xiàn)1(0,1),F(xiàn)2(0,-1),則,當e最大時,a取得最小
則在直線l上找一點P,使得|PF1|+|PF2|最小
設F2(0,-1)關于2x-y+4=0對稱點為F2′(x,y)     …(6分)
,解得
…(8分)
∴所求橢圓方程為…(9分)
(3)假設l′存在為y=b,以MD為直徑的圓N的圓心為N
半徑為r=|ND|=…l0分
N到直線l′的距離為d=

∴弦長=…(12分)
∴當b=-1時,弦長為定值2                             …(13分)
即l′為y=-1時,垂直于y軸的直線l′被以MD為直徑 的圓截得的弦長為定值2.…(14分)
點評:本題考查直線、拋物線、橢圓方程的求解,考查弦長的計算,考查對稱點的求解,考查學生分析解決問題的能力,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知過點A(0,1),B(4,a)且與x軸相切的圓只有一個,求a的值及所對應的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知過點A(0,4)的直線l與以F為焦點的拋物線C:x2=py相切于點T(-4,yo);中心在坐標原點,一個焦點為F的橢圓與直線l有公共點.
(1)求直線l的方程和焦點F的坐標;
(2)求當橢圓的離心率最大時橢圓的方程;
(3)設點M(x1,yl)是拋物線C上任意一點,D(0,-2)為定點,是否存在垂直于y軸的直線l′被以MD為直徑的圓截得的弦長為定值?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知過點A(0,1),B(4,a)且與x軸相切的圓只有一個,求a的值及所對應的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2010年云南省高中學業(yè)水平考試增分測試數(shù)學試卷(二)(必修2)(解析版) 題型:解答題

已知過點A(0,1),B(4,a)且與x軸相切的圓只有一個,求a的值及所對應的圓的方程.

查看答案和解析>>

同步練習冊答案