已知a為實(shí)數(shù),數(shù)列{an}滿(mǎn)足a1=a,當(dāng)n≥2時(shí),an=
an-1-3     (an-1>3)
4-an-1    (an-1≤3)

(1)當(dāng)a=100時(shí),填寫(xiě)下列列表格:
n 2 3 35 100
an
(2)當(dāng)a=100時(shí),求數(shù)列{an}的前100項(xiàng)的和S100;
(3)令bn=
an
(-2)n
Tn=b1+b2+…+bn
,求證:當(dāng)1<a<
4
3
時(shí),Tn
4-3a
3
分析:解:(1)當(dāng)a=100時(shí),由題意知數(shù)列{an}的前34項(xiàng)成首項(xiàng)為100,公差為-3的等差數(shù)列,從第35項(xiàng)開(kāi)始,奇數(shù)項(xiàng)均為3,偶數(shù)項(xiàng)均為1,由此能完成表格.
(2)當(dāng)a=100時(shí),由題意知數(shù)列{an}的前34項(xiàng)成首項(xiàng)為100,公差為-3的等差數(shù)列,從第35項(xiàng)開(kāi)始,奇數(shù)項(xiàng)均為3,偶數(shù)項(xiàng)均為1,從而S100=(100+97+94+…+4+1)+(3+1+…+3+1)(前一組共34項(xiàng),后一組共66項(xiàng)),由此能求出結(jié)果.    
(3)當(dāng)1<a<
4
3
時(shí),因?yàn)?span id="tnx5ffv" class="MathJye">an=
a,n為奇數(shù)
4-a,n為偶數(shù)
,所以bn=
an
(-2)n
=
-
a
2 n
,n為奇數(shù)
4-a
2n
,n為偶數(shù)
,由此能夠證明當(dāng)1<a<
4
3
時(shí),Tn
4-3a
3
解答:解:(1)
n 2 3 35 100
an 97 94 3 1
(2)當(dāng)a=100時(shí),由題意知數(shù)列{an}的前34項(xiàng)成首項(xiàng)為100,公差為-3的等差數(shù)列,從第35項(xiàng)開(kāi)始,奇數(shù)項(xiàng)均為3,偶數(shù)項(xiàng)均為1,
從而S100=(100+97+94+…+4+1)+(3+1+…+3+1)(前一組共34項(xiàng),后一組共66項(xiàng))
=
(100+1)×34
2
+(3+1)×
66
2

=1717+132
=1849.                  
(3)當(dāng)1<a<
4
3
時(shí),因?yàn)?span id="vp7vrnh" class="MathJye">an=
a,n為奇數(shù)
4-a,n為偶數(shù)
,
所以bn=
an
(-2)n
=
-
a
2 n
,n為奇數(shù)
4-a
2n
,n為偶數(shù)
,
當(dāng)n=2k,k∈N*時(shí),
Tn=b1+b2+…+b2k
=-
a
2
+
4-a
22
-
a
23
+
4-a
24
+…-
a
22k-1
+
4-a
22k

=-(
a
2
+
a
23
+…+
a
22k-1
)
+(
4-a
22
+
4-a
24
+…+
4-a
22k
)

=-
a
2
[1-(
1
4
)k ]
1-
1
4
+
4-a
4
[1-(
1
4
)k ]
1-
1
4

=
4-3a
3
[1-(
1
4
)
k
]

因?yàn)?<a<
4
3
,所以
4-3a
3
[1-(
1
4
)
k
]<
4-3a
3

當(dāng)n=2k-1,k∈N*時(shí),
Tn=b1+b2+…+b2k-1
=-
a
2
+
4-a
22
-
a
23
+
4-a
24
+…-
a
22k-1

-
a
2
+
4-a
22
-
a
2 3
+
4-a
24
+…-
a
22k-1
+
4-a
22k
4-3a
3

所以Tn
4-3a
3
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合運(yùn)用.解題時(shí)要認(rèn)真審題,注意挖掘題設(shè)中的隱含條件,合理地進(jìn)行等價(jià)轉(zhuǎn)化.本題的易錯(cuò)點(diǎn)是不區(qū)分n的奇偶性,導(dǎo)致出錯(cuò).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a為實(shí)數(shù),數(shù)列{an}滿(mǎn)足a1=a,當(dāng)n≥2時(shí)an=
an-1-3,(an-1>3)
4-an-1,(an-1≤3)
,
(Ⅰ)當(dāng)a=100時(shí),求數(shù)列{an}的前100項(xiàng)的和S100;
(Ⅱ)證明:對(duì)于數(shù)列{an},一定存在k∈N*,使0<ak≤3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a為實(shí)數(shù),數(shù)列{an}滿(mǎn)足a1=a,當(dāng)n≥2時(shí),an=
an-1-3,(an-1>3)
4-an-1,(an-1≤3)
,
(Ⅰ)當(dāng)a=100,時(shí),求數(shù)列{an}的前100項(xiàng)的和S100
(Ⅱ)證明:對(duì)于數(shù)列{an},一定存在k∈N*,使0<ak≤3;
(Ⅲ)令bn=
an
2n-(-1)n
,當(dāng)2<a<3時(shí),求證:
n
i=1
bi
20+a
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•大連二模)已知a為實(shí)數(shù),數(shù)列{an}滿(mǎn)足a1=a,當(dāng)n≥2時(shí),an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)當(dāng)a=200時(shí),填寫(xiě)下列表格;
N 2 3 51 200
an
(II)當(dāng)a=200時(shí),求數(shù)列{an}的前200項(xiàng)的和S200
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求證:當(dāng)1<a<
5
3
時(shí),T n
5-3a
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知a為實(shí)數(shù),數(shù)列{an}滿(mǎn)足a1=a,當(dāng)n≥2時(shí),數(shù)學(xué)公式,
(1)當(dāng)a=100時(shí),填寫(xiě)下列列表格:
n2335100
an
(2)當(dāng)a=100時(shí),求數(shù)列{an}的前100項(xiàng)的和S100;
(3)令數(shù)學(xué)公式,求證:當(dāng)數(shù)學(xué)公式時(shí),數(shù)學(xué)公式

查看答案和解析>>

同步練習(xí)冊(cè)答案