一個盒子里裝有7張卡片,其中有紅色卡片4張,編號分別為1,2,3,4;白色卡片3張,編號分別為2,3,4.從盒子中任取4張卡片(假設取到任何一張卡片的可能性相同)

(1)求取出的4張卡片中,含有編號為3的卡片的概率;

(2)在取出的4張卡片中,紅色卡片編號的最大值設為X,求隨機變量X的分布列和數(shù)學期望.

 

12

【解析】(1)取出的4張卡片中,含有編號為3的卡片為事件A,則P(A)

取出的4張卡片中,含有編號為3的卡片的概率為.

(2)隨機變量X的所有可能取值為1,2,3,4.

P(X1),P(X2),

P(X3),P(X4).

所以隨機變量X的分布列是

X

1

2

3

4

P

隨機變量X的數(shù)學期望E(X).

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習2-1函數(shù)的概念與基本初等函數(shù)練習卷(解析版) 題型:填空題

已知定義在R上的函數(shù)yf(x)滿足條件f=-f(x),且函數(shù)yf為奇函數(shù),給出以下四個命題:

(1)函數(shù)f(x)是周期函數(shù);

(2)函數(shù)f(x)的圖象關于點對稱;

(3)函數(shù)f(x)R上的偶函數(shù);

(4)函數(shù)f(x)R上的單調函數(shù).

其中真命題的序號為________(寫出所有真命題的序號)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練選修4-2練習卷(解析版) 題型:解答題

已知矩陣M,ABC的頂點為A(0,0),B(2,0),C(1,2),求ABC在矩陣M1的變換作用下所得ABC的面積.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-7-3練習卷(解析版) 題型:解答題

某工科院校對A,B兩個專業(yè)的男女生人數(shù)進行調查,得到如下的列聯(lián)表:

 

專業(yè)A

專業(yè)B

總計

女生

12

4

16

男生

38

46

84

總計

50

50

100

(1)B專業(yè)的女生中隨機抽取2名女生參加某項活動,其中女生甲被選到的概率是多少?

(2)能否在犯錯誤的概率不超過0.05的前提下,認為工科院校中性別專業(yè)有關系呢?

注:K2

P(K2k0)

0.25

0.15

0.10

0.05

0.025

k0

1.323

2.072

2.706

3.841

5.024

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-7-3練習卷(解析版) 題型:選擇題

對一批產品的長度(單位:mm)進行抽樣檢測,下圖為檢測結果的頻率分布直方圖.根據(jù)標準,產品長度在區(qū)間[20,25)上的為一等品,在區(qū)間[15,20)和區(qū)間[25,30)上的為二等品,在區(qū)間[10,15)[30,35)上的為三等品.用頻率估計概率,現(xiàn)從該批產品中隨機抽取一件,則其為二等品的概率為 (  )

A0.09 B0.20 C0.25 D0.45

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-7-2練習卷(解析版) 題型:選擇題

如圖所示,在邊長為1的正方形OABC中任取一點P,則點P恰好取自陰影部分的概率為(  )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-7-1練習卷(解析版) 題型:填空題

n(nN*)的展開式中只有第6項的系數(shù)最大,則該展開式中的常數(shù)項為________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-6-3練習卷(解析版) 題型:選擇題

等軸雙曲線C的中心在原點,焦點在x軸上,C與拋物線y216x的準線交于A,B兩點,|AB|4,則C的實軸長為(  )

A. B2 C4 D8

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪專題復習知能提升演練1-5-2練習卷(解析版) 題型:選擇題

如圖所示,在四邊形ABCD中,ADBCADAB,BCD45°,BAD90°.ADB沿BD折起,使平面ABD平面BCD,構成三棱錐ABCD.則在三棱錐ABCD中,下列命題正確的是(  )

A.平面ABD平面ABC

B.平面ADC平面BDC

C.平面ABC平面BDC

D.平面ADC平面ABC

 

查看答案和解析>>

同步練習冊答案