已知兩直線l1:mx+8y+n=0(其中m≥0)和直線l2:2x+my-1=0
(1)若直線l1與l2相交于點P(m,-1),求實數(shù)m,n的值;
(2)若直線l1⊥l2且直線l1在y軸上的截距為-1,求實數(shù)m,n的值.
分析:(1)將點P(m,-1)代入兩直線方程,解出m和n的值.
(2)先檢驗斜率不存在的情況,當斜率存在時,看斜率之積是否等于-1,從而得到結論.
解答:解:(1)將點P(m,-1)代入兩直線方程得:m2-8+n=0 和 2m-m-1=0,
解得 m=1,n=7.
(2)當m=0時直線l1:y=-
n
8
和 l2:x=
1
2
,此時,l1⊥l2,-
n
8
=-1⇒n=8.
當m≠0時此時兩直線的斜率之積等于
1
4
,顯然 l1與l2不垂直,
所以當m=0,n=8時直線 l1 和 l2垂直,且l1在y軸上的截距為-1.
點評:本題考查兩條直線的交點坐標、垂直的性質,兩直線垂直,斜率之積等于-1,考查分類討論的數(shù)學思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知兩直線l1:mx+8y+n=0和l2:2x+my-1=0,試確定m,n的值,使
(1)l1與l2相交于點P(m,-1);
(2)l1∥l2;
(3)l1⊥l2,且l1在y軸上的截距為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩直線l1:mx+y-2=0和l2:(m+2)x+y+4=0與兩坐標軸圍成的四邊形有外接圓,則實數(shù)m的值為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩直線l1:mx+8y+n=0和l2:2x+my-1=0,
(1)若l1與l2交于點p(m,-1),求m,n的值;
(2)若l1∥l2,試確定m,n需要滿足的條件;
(3)若l1⊥l2,試確定m,n需要滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩直線l1:mx+8y+n=0和l2:2x+my-1=0.試確定m,n的值,使
(1)l1∥l2
(2)l1⊥l2,且l1在y軸上的截距為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩直線l1:mx+8y+n=0和l2:2x+my-1=0,
(1)若l1與l2交于點P(m,-1),求m,n的值;
(2)若l1∥l2,試確定m,n需要滿足的條件.

查看答案和解析>>

同步練習冊答案