已知為等比數(shù)列,是它的前項(xiàng)和。若,且的等差中項(xiàng)為,則=       .

31

解析試題分析:由,即,的等差中項(xiàng)為,可得,得,從而,所以
考點(diǎn):等比數(shù)列的通項(xiàng)公式,等比數(shù)列的前項(xiàng)和,等差中項(xiàng),考查學(xué)生的運(yùn)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,將圓分成n個(gè)區(qū)域,用3種不同顏色給每一個(gè)區(qū)域染色,要求相鄰區(qū)域顏色互異,把不同的染色方法種數(shù)記為an.

(1)        
(2)        .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于數(shù)列,若中最大值,則稱(chēng)數(shù)列為數(shù)列的“凸值數(shù)列”.如數(shù)列2,1,3,7,5的“凸值數(shù)列”為2,2,3,7,7;由此定義,下列說(shuō)法正確的有___________________.
①遞減數(shù)列 的“凸值數(shù)列”是常數(shù)列;②不存在數(shù)列,它的“凸值數(shù)列”還是本身;③任意數(shù)列的“凸值數(shù)列”是遞增數(shù)列;④“凸值數(shù)列”為1,3,3,9的所有數(shù)列的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問(wèn)題,他們?cè)谏碁┥袭?huà)點(diǎn)或用小石子來(lái)表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類(lèi),如圖4中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…, 被稱(chēng)為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,……,若按此規(guī)律繼續(xù)下去,若,則                     .

1         5            12               22

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列{an}滿(mǎn)足:a1=m(m為正整數(shù)),,若a6=1,則m所有可能的取值為_(kāi)_______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,矩形的一邊軸上,另外兩個(gè)頂點(diǎn)在函數(shù)的圖象上.若點(diǎn)的坐標(biāo)為,記矩形的周長(zhǎng)為,則                 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

設(shè)等比數(shù)列的各項(xiàng)均為正數(shù),公比為,前項(xiàng)和為.若對(duì),有,則的取值范圍是               。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

根據(jù)市場(chǎng)調(diào)查結(jié)果,預(yù)測(cè)某種家用商品從年初開(kāi)始的n個(gè)月內(nèi)累積的需求量Sn(萬(wàn)件)近似地滿(mǎn)足關(guān)系式Sn(21n-n2-5)(n=1,2,…,12),按此預(yù)測(cè),在本年度內(nèi),需求量超過(guò)1.5萬(wàn)件的月份是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

           .

查看答案和解析>>

同步練習(xí)冊(cè)答案