某單位有7個連在一起的停車位,現(xiàn)有3輛不同型號的車需要停放,如果要求剩余的4個空車位連在一起,則不同的停放方法有
24
24
 種.
分析:把4個空車位捆綁在一起,當(dāng)一個元素,與需要停放的3輛車做全排列,即可得到結(jié)論.
解答:解:把4個空車位捆綁在一起,當(dāng)一個元素,與需要停放的3輛車做全排列,即
A
4
4
=4×3×2×1=24,
故答案為:24.
點評:本題考查排列知識,考查捆綁法的運(yùn)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)某單位有7個連在一起的車位,現(xiàn)有3輛不同型號的車需停放,如果要求剩余的4個車位連在一起,則不同的停放方法的種數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆福建省高二下學(xué)期期中考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

某單位有7個連在一起的停車位,現(xiàn)有3輛不同型號的車需要停放,如果要求剩余的4個空車位連在一起,則不同的停放方法有       種。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆山東省冠縣一中高二下期中學(xué)分認(rèn)定理科數(shù)學(xué)試卷(解析版) 題型:選擇題

某單位有7個連在一起的車位,現(xiàn)有3輛不同型號的車需停放,如果要求剩余的4個車位連在一起,則不同的停放方法的種數(shù)為(   )

A.   16            B.    18           C.   24         D.  32

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市石景山區(qū)高三統(tǒng)一考試數(shù)學(xué)理卷 題型:選擇題

某單位有7個連在一起的車位,現(xiàn)有3輛不同型號的車需停放,如果要求剩余的4個車位連在一起,則不同的停放方法的種數(shù)為                            (    )

       A.16                          B.18                          C.24                   D.32

 

查看答案和解析>>

同步練習(xí)冊答案