已知函數(shù)上一點(diǎn)P(1,-2),過點(diǎn)P作直線l,(Ⅰ)求使直線ly=fx)相切且以P為切點(diǎn)的直線方程;(Ⅱ)求使直線ly=fx)相切且切點(diǎn)異于P的直線方程y=gx);(Ⅲ)在(Ⅱ)的條件下,求上單調(diào)時(shí),t的取值范圍.
(Ⅰ)   (Ⅱ)   (Ⅲ)
:(Ⅰ)由過點(diǎn)P且以P(1,-2)為切點(diǎn)的直線的斜率,所求直線方程:  (3分)
(Ⅱ)設(shè)過P(1,-2)的直線l切于另一點(diǎn)
知:即:
故所求直線的斜率為:
   (8分)
(Ⅲ)由(Ⅱ)可知

上單調(diào)遞增, (11分)
為兩極值點(diǎn),在時(shí),
上單調(diào)遞增,
 (14分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),
(1)在區(qū)間是增函數(shù)還是減函數(shù)?并證明你的結(jié)論;
(2)若當(dāng)時(shí),恒成立,求整數(shù)的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知直線x+2y-4=0與拋物線y2=4x相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),P是拋物線的弧上求一點(diǎn)P,當(dāng)△PAB面積最大時(shí),P點(diǎn)坐標(biāo)為          .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),(1)求函數(shù)的單調(diào)減區(qū)間;(2)若,證明:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)已知函數(shù) (I)求曲線處的切線方程;  (Ⅱ)求證函數(shù)在區(qū)間[0,1]上存在唯一的極值點(diǎn),并用二分法求函數(shù)取得極值時(shí)相應(yīng)x的近似值(誤差不超過0.2);(參考數(shù)據(jù)e≈2.7,≈1.6,e0.3≈1.3)
(III)當(dāng)試求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題


已知橢圓的焦點(diǎn)在x軸上,中心在坐標(biāo)原點(diǎn),以右焦點(diǎn)為圓心,過另一焦點(diǎn)的圓被右準(zhǔn)線截的兩段弧長之比2:1,為此平面上一定點(diǎn),且.(1)求橢圓的方程(2)若直線與橢圓交于如圖兩點(diǎn)A、B,令。求函數(shù)的值域

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求函數(shù)的導(dǎo)數(shù) 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)導(dǎo)數(shù)為(        )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的導(dǎo)數(shù)是(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案