【題目】某校為確定數(shù)學(xué)成績與玩手機之間的關(guān)系,從全校隨機抽樣調(diào)查了40名同學(xué),其中40%的人玩手機.這40位同學(xué)的數(shù)學(xué)分?jǐn)?shù)(百分制)的莖葉圖如圖所示.
數(shù)學(xué)成績不低于70分為良好,低于70分為一般.
(1)根據(jù)以上資料完成下面的列聯(lián)表,并判斷有多大把握認(rèn)為“數(shù)學(xué)成績良好與不玩手機有關(guān)系”.
良好 | 一般 | 總計 | |
不玩手機 | |||
玩手機 | |||
總計 | 40 |
(2)現(xiàn)將40名同學(xué)的數(shù)學(xué)成績分為如下5組:
,,,,.其頻率分布直方圖如圖所示.計算這40名同學(xué)數(shù)學(xué)成績的平均數(shù),由莖葉圖得到的真實值記為,由頻率分布直方圖得到的估計值記為(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表),求與的誤差值.
(3)從這40名同學(xué)數(shù)學(xué)成績高于90分的7人中隨機選取2人介紹學(xué)習(xí)方法,求這2保不玩手機的人數(shù)的分布列和數(shù)學(xué)期望.
附:,這40名同學(xué)的數(shù)學(xué)成績總和為2998分.
【答案】(1)表格見解析,有95%的把握認(rèn)為“數(shù)學(xué)成績良好與不玩手機有關(guān)系”;(2)0.30;(3)分布列見解析,.
【解析】
(1)由莖葉圖的數(shù)據(jù),得到的列聯(lián)表,利用公式求得的值,結(jié)合附表,即可得到結(jié)論;
(2)根據(jù)同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表求得,再根據(jù)平均數(shù)的計算公式求得,作差即可得到答案;
(3)根據(jù)題意,求得的取值,求得相應(yīng)的概率,得出分布列,利用公式求得期望.
(1)由莖葉圖的數(shù)據(jù),可得的列聯(lián)表:
良好 | 一般 | 總計 | |
不玩手機 | 18 | 6 | 24 |
玩手機 | 6 | 10 | 16 |
總計 | 24 | 16 | 40 |
計算得,
所以有95%的把握認(rèn)為“數(shù)學(xué)成績良好與不玩手機有關(guān)系”.
(2)由莖葉圖可知,各組數(shù)據(jù)的頻數(shù)分別為6,10,8,9,7,
則.
莖葉圖得到的真實值為,
所以與的誤差值為.
(3)的取值有,
則,,,
所以的分布列為
0 | 1 | 2 | |
期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若關(guān)于的方程有實數(shù)根,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是定義在R上的函數(shù)的導(dǎo)函數(shù),且,則 的大小關(guān)系為( )
A. a<b<c B. b<a<c C. c<a<b D. c<b<a
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)若在處取到極值,求,的值,并求的單調(diào)區(qū)間;
(2)若對任意,都存在(為自然對數(shù)的底數(shù)),使得成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4—5:參數(shù)方程選講]
在直角坐標(biāo)系xoy中,曲線的參數(shù)方程是(t是參數(shù)),以坐標(biāo)原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是
(1)求曲線的普通方程和曲線的直角坐標(biāo)方程;
(2)若兩曲線交點為A、B,求
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(單位:分.百分制,均為整數(shù))分成,,,,,六組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.
(1)求分?jǐn)?shù)在內(nèi)的頻率,并補全這個頻率分布直方圖;
(2)從頻率分布直方圖中,估計本次考試成績的眾數(shù)和平均數(shù);
(3)若從第1組和第6組兩組學(xué)生中,隨機抽取2人,求所抽取2人成績之差的絕對值大于10的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在①,②,③這三個條件中任選一個,補充在下面問題中,若問題中的三角形存在,求的值;若問題中的三角形不存在,說明理由.
問題:是否存在,它的內(nèi)角的對邊分別為,且,,________?
注:如果選擇多個條件分別解答,按第一個解答計分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )
A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上
B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比前多
D. 互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)后比后多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com