精英家教網 > 高中數學 > 題目詳情
設M是△ABC內任一點,且=2,∠BAC=30°,設△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標系中,以x,y為坐標的點(x,y)的軌跡圖形是( )
A.
B.
C.
D.
【答案】分析:先求出AB•AC,再求出△ABC的面積,再利用△ABC的面積等于x+y+z及Z=,可得 x+y=,
0≤x≤,0≤y≤
解答:解:∵=AB•AC•cos30°=2,∴AB•AC=4,
△ABC的面積為 AB•AC sin30°=1,由題意知 x+y+z=1,再由Z=,
∴x+y=,0≤x≤,0≤y≤
故選 A.
點評:本題考查兩個向量的數量積的定義,以及三角形的面積公式的應用,直線的一般式方程的特征.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設M是△ABC內任一點,且
AB
AC
=2
3
,∠BAC=30°,設△MBC,△MAC,△MAB的面積分別x,y,z,且Z=
1
2
,則在平面直角中坐標系中,以x,y為坐標的點(x,y)的軌跡圖形是(  )
A、精英家教網
B、精英家教網
C、精英家教網
D、精英家教網

查看答案和解析>>

科目:高中數學 來源:2010-2011學年重慶一中高三(上)期末數學試卷(理科)(解析版) 題型:選擇題

設M是△ABC內任一點,且=2,∠BAC=30°,設△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標系中,以x,y為坐標的點(x,y)的軌跡圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2011-2012學年安徽省合肥八中高三第五次段考數學試卷(理科)(解析版) 題型:選擇題

設M是△ABC內任一點,且=2,∠BAC=30°,設△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標系中,以x,y為坐標的點(x,y)的軌跡圖形是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源:2011年湖北省黃岡市英山一中高考數學模擬試卷(文科)(解析版) 題型:選擇題

設M是△ABC內任一點,且=2,∠BAC=30°,設△MBC,△MAC,△MAB的面積分別x,y,z,且Z=,則在平面直角中坐標系中,以x,y為坐標的點(x,y)的軌跡圖形是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案