在△ABC中,已知sinAcosA=sinBcosB,則△ABC是( 。
分析:利用二倍角的正弦公式與誘導(dǎo)公式即可判斷該△ABC的形狀.
解答:解:∵在△ABC中,sinAcosA=sinBcosB,
1
2
sin2A=
1
2
sin2B,
∴sin2A=sin2B,
又sin2B=sin(π-2B),
∴2A=2B或2A=π-2B,
∴A=B或A+B=
π
2
,
∴△ABC是等腰三角形或直角三角形.
故選:D.
點(diǎn)評(píng):本題考查三角形的形狀判斷,著重考查二倍角的正弦公式與誘導(dǎo)公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知|
AB
|=4,|
AC
|=1,S△ABC=
3
,則
AB
AC
的值為( 。
A、-2B、2C、±4D、±2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•婺城區(qū)模擬)在△ABC中,已知
AB
AC
=9,sinB=cosA•sinC,S△ABC=6,P為線段AB上的點(diǎn),且
CP
=x
CA
|
CA
|
+y
CB
|
CB
|
,則xy的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知a=8,c=18,S△ABC=36
3
,則B等于
B=
π
3
3
B=
π
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知
AB
AC
=9,sinB=cosAsinC,S△ABC=6
,P為線段AB上的一點(diǎn),且
CP
=x•
CA
|
CA
|
+y•
CB
|
CB
|
,則
1
x
+
1
y
的最小值為
7
12
+
3
3
7
12
+
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:高中數(shù)學(xué)全解題庫(kù)(國(guó)標(biāo)蘇教版·必修4、必修5) 蘇教版 題型:044

在△ABC中,已知SABC(a2+b2),求AB,C

查看答案和解析>>

同步練習(xí)冊(cè)答案