數(shù)列的前項(xiàng)和為,數(shù)列是首項(xiàng)為,公差不為零的等差數(shù)列,且成等比數(shù)列.
(1)求的值;
(2)求數(shù)列與的通項(xiàng)公式;
(3)求證:
(1)(2)
(3)令,
兩式式相減得又,故
【解析】
試題分析:(1)∵,
∴當(dāng)時(shí),,解得;當(dāng)時(shí),,解得;
當(dāng)時(shí),,解得. 3分
(2)當(dāng)時(shí),, -5分
得又,,∴數(shù)列{}是以2為首項(xiàng),公比為2的等比數(shù)列,
所以數(shù)列{}的通項(xiàng)公式為. 7分
,設(shè)公差為,則由成等比數(shù)列,
得, 8分
解得(舍去)或, 9分
所以數(shù)列的通項(xiàng)公式為.- 10分
(3)令,
, 11分
兩式式相減得
,, 13分
又,故. 14分
考點(diǎn):數(shù)列求通項(xiàng)求和
點(diǎn)評(píng):數(shù)列求通項(xiàng)時(shí)用到了此公式中注意分兩種情況,第三問數(shù)列求和時(shí)用到了錯(cuò)位相減法,這種方法一般適用于通項(xiàng)公式為關(guān)于n的一次式與指數(shù)式的乘積形式的數(shù)列,是數(shù)列求和最常用的方法之一
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2009高考真題匯編3-數(shù)列 題型:解答題
(本小題滿分14分)
設(shè)數(shù)列的前項(xiàng)和為,對(duì)任意的正整數(shù),都有成立,記。
(Ⅰ)求數(shù)列與數(shù)列的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列的前項(xiàng)和為,是否存在正整數(shù),使得成立?若存在,找出一個(gè)正整數(shù);若不存在,請(qǐng)說明理由;
(Ⅲ)記,設(shè)數(shù)列的前項(xiàng)和為,求證:對(duì)任意正整數(shù)都有。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆廣東省中山市楊仙逸中學(xué)高三上學(xué)期聯(lián)考數(shù)學(xué)卷(理) 題型:解答題
若數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年上海市十三校高三12月聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知無(wú)窮數(shù)列的前項(xiàng)和為,且滿足,其中、、是常數(shù).
(1)若,,,求數(shù)列的通項(xiàng)公式;
(2)若,,,且,求數(shù)列的前項(xiàng)和;
(3)試探究、、滿足什么條件時(shí),數(shù)列是公比不為的等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年福建福州市畢業(yè)班質(zhì)量檢查文科數(shù)學(xué)試卷(解析版) 題型:解答題
數(shù)列的前項(xiàng)和為,數(shù)列是首項(xiàng)為,公差為的等差數(shù)列,且成等比數(shù)列.
(Ⅰ)求數(shù)列與的通項(xiàng)公式;
(Ⅱ)若,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年廣東省中山市高三上學(xué)期聯(lián)考數(shù)學(xué)卷(理) 題型:解答題
若數(shù)列的前項(xiàng)和為,點(diǎn)均在函數(shù)的圖象上
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列是首項(xiàng)為1,公比為的等比數(shù)列,求數(shù)列的前項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com