【題目】已知橢圓的離心率為,經(jīng)過橢圓的右焦點的弦中最短弦長為2.

(1)求橢圓的的方程;

(2)已知橢圓的左頂點為為坐標原點,以為直徑的圓上是否存在一條切線交橢圓于不同的兩點,且直線的斜率的乘積為?若存在,求切線的方程;若不存在,請說明理由.

【答案】(1);(2).

【解析】分析:第一問利用題中所給的橢圓的離心率,以及焦點弦中通徑最短的結(jié)論,以及橢圓中三者之間的關(guān)系求得橢圓的方程;第二問先設(shè)出切線方程,利用圓心到直線的距離等于半徑,得到系數(shù)之間的關(guān)系,與橢圓方程聯(lián)立,根據(jù)題的條件,得到相應的等量關(guān)系式,最后求得結(jié)果即可.

詳解:(1)由題意有:;

(2)設(shè)切線方程為,則有

聯(lián)立方程有:,

斜率乘積為,

代入有:

所以,,①時,;②時,;

時,;④時,

所以直線為.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)生產(chǎn)一種機器的固定成本(即固定投入)為0.5萬元,但每生產(chǎn)100臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為500臺,銷售的收入(單位:萬元)函數(shù)為,其中是產(chǎn)品生產(chǎn)的數(shù)量(單位:百臺).

(1)求利潤關(guān)于產(chǎn)量的函數(shù).

(2)年產(chǎn)量是多少時,企業(yè)所得的利潤最大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)函數(shù),其中,若存在唯一的整數(shù)使得,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給定函數(shù)和常數(shù),若恒成立,則稱()為函數(shù)的一個好數(shù)對”,已知函數(shù)的定義域為.

1)若(1,1)是函數(shù)的一個好數(shù)對,且,求,;

2)若(2,0)是函數(shù)的一個好數(shù)對,且當時,,判斷方程在區(qū)間[1,8]上根的個數(shù);

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)內(nèi)角的對邊分別為,若,,,且,試求角和角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》里有一段敘述:今有良馬與駑馬發(fā)長安至齊,齊去長安一千一百二十五里,良馬初日行一百零三里,日增十三里;駑馬初日行九十七里,日減半里;良馬先至齊,復還迎駑馬,二馬相逢.根據(jù)該問題設(shè)計程序框圖如下,若輸入,則輸出的值是( )

A. 8 B. 9 C. 12 D. 16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點分別為,點是坐標平面內(nèi)一點,且, 為坐標原點).

(1)求橢圓的方程;

(2)過點且斜率為的動直線交橢圓于兩點,在軸上是否存在定點,使以為直徑的圓恒過該點?若存在,求出點的坐標,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列四個命題中,其中錯誤的個數(shù)是()

①經(jīng)過球面上任意兩點,可以作且只可以作一個大圓;

②經(jīng)過球直徑的三等分點,作垂直于該直徑的兩個平面,則這兩個平面把球面分成三部分的面積相等;

③球的面積是它大圓面積的四倍;

④球面上兩點的球面距離,是這兩點所在截面圓上,以這兩點為端點的劣弧的長.

A. 0B. 1C. 2D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是

(1)對分類變量的隨機變量的觀測值來說,越小,判斷“有關(guān)系”的把握越大;

(2)若將一組樣本數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,則樣本的方差不變;

(3)在殘差圖,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;

(4)設(shè)隨機變量服從正態(tài)分布;

,則( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

同步練習冊答案