【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價(jià),將該產(chǎn)品按事先擬定的價(jià)格進(jìn)行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點(diǎn),則它在回歸直線左下方的概率為______.
單價(jià)(元) | 4 | 5 | 6 | 7 | 8 | 9 |
銷量(件) | 90 | 84 | 83 | 80 | 75 | 68 |
【答案】
【解析】
根據(jù)已知中數(shù)據(jù)點(diǎn)坐標(biāo),我們易求出這些數(shù)據(jù)的數(shù)據(jù)中心點(diǎn)坐標(biāo),進(jìn)而求出回歸直線方程,判斷各個(gè)數(shù)據(jù)點(diǎn)與回歸直線的位置關(guān)系后,求出所有基本事件的個(gè)數(shù)及滿足條件兩點(diǎn)恰好在回歸直線下方的基本事件個(gè)數(shù),代入古典概率公式,即可得到答案.
,
,
,
回歸直線方程;
數(shù)據(jù),,,,,.6個(gè)點(diǎn)中有2個(gè)點(diǎn)在直線的下側(cè),
即,.
則其這些樣本點(diǎn)中任取1點(diǎn),共有6種不同的取法,
其中這兩點(diǎn)恰好在回歸直線兩側(cè)的共有2種不同的取法,
故這點(diǎn)恰好在回歸直線下方的概率.
故答案為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),將函數(shù)的圖象沿軸向左平移個(gè)單位長度后,又沿軸向上平移1個(gè)單位,再將得到的圖象上各點(diǎn)的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)的圖象.
(1)求的對稱中心;
(2)若,求的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地電影院為了了解當(dāng)?shù)赜懊詫煲嫌车囊徊侩娪暗钠眱r(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:
x(單位:元) | 30 | 40 | 50 | 60 |
y(單位:萬人) | 4.5 | 4 | 3 | 2.5 |
(1)若y與x具有較強(qiáng)的相關(guān)關(guān)系,試分析y與x之間是正相關(guān)還是負(fù)相關(guān);
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)根據(jù)(2)中求出的線性回歸方程,預(yù)測票價(jià)定為多少元時(shí),能獲得最大票房收入.
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】傳承傳統(tǒng)文化再掀熱潮,央視科教頻道以詩詞知識(shí)競賽為主的《中國詩詞大會(huì)》火爆熒屏.某機(jī)構(gòu)組織了一場詩詞知識(shí)競賽,將中學(xué)組和大學(xué)組的參賽選手按成績分為優(yōu)秀、良好、一般三個(gè)等級(jí),從中隨機(jī)抽取100名選手進(jìn)行調(diào)查,如圖是根據(jù)調(diào)查結(jié)果繪制的選手等級(jí)與人數(shù)的條形圖.
(1)若將一般等級(jí)和良好等級(jí)合稱為合格等級(jí),根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此判斷能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為選手成績優(yōu)秀與文化程度有關(guān)?
優(yōu)秀 | 合格 | 總計(jì) | |
大學(xué)組 | |||
中學(xué)組 | |||
總計(jì) |
(2)若參賽選手共6萬名,用頻率估計(jì)概率,試估計(jì)其中優(yōu)秀等級(jí)的選手人數(shù);
(3)在優(yōu)秀等級(jí)的選手中選取6名,在良好等級(jí)的選手中選取6名,都依次編號(hào)為1,2,3,4,5,6,在選出的6名優(yōu)秀等級(jí)的選手中任取一名,記其編號(hào)為a,在選出的6名良好等級(jí)的選手中任取一名,記其編號(hào)為b,求使得方程組有唯一一組實(shí)數(shù)解(x,y)的概率.
參考公式:,其中.
參考數(shù)據(jù):
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給定兩個(gè)命題,P:對任意實(shí)數(shù)x都有ax2+ax+1>0恒成立;Q:關(guān)于x的方程x2﹣x+a=0有實(shí)數(shù)根;如果“P∧Q”為假,且“P∨Q”為真,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校1800名學(xué)生在一次百米測試中,成績?nèi)拷橛?3秒與18秒之間,抽取其中50名學(xué)生組成一個(gè)樣本,將測試結(jié)果按如下方式分成五組:第一組,第二組……,第五組,如圖是按上述分組方法得到的頻率分布直方圖.
(1)請估計(jì)學(xué)校1800名學(xué)生中,成績屬于第四組的人數(shù);
(2)若成績小于15秒認(rèn)為良好,求該樣本中在這次百米測試中成績良好的人數(shù);
(3)請根據(jù)頻率分布直方圖,求樣本數(shù)據(jù)的眾數(shù)、平均數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了研究學(xué)生的數(shù)學(xué)核素養(yǎng)與抽象(能力指標(biāo))、推理(能力指標(biāo))、建模(能力指標(biāo))的相關(guān)性,并將它們各自量化為1、2、3三個(gè)等級(jí),再用綜合指標(biāo)的值評定學(xué)生的數(shù)學(xué)核心素養(yǎng),若,則數(shù)學(xué)核心素養(yǎng)為一級(jí);若,則數(shù)學(xué)核心素養(yǎng)為二級(jí);若,則數(shù)學(xué)核心素養(yǎng)為三級(jí),為了了解某校學(xué)生的數(shù)學(xué)核素養(yǎng),調(diào)查人員隨機(jī)訪問了某校10名學(xué)生,得到如下:
(1)在這10名學(xué)生中任取兩人,求這兩人的建模能力指標(biāo)相同的概率;
(2)從數(shù)學(xué)核心素養(yǎng)等級(jí)是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為,從數(shù)學(xué)核心素養(yǎng)等級(jí)不是一級(jí)的學(xué)生中任取一人,其綜合指標(biāo)為,記隨機(jī)變量,求隨機(jī)變量的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正方體中,,分別為,的中點(diǎn),點(diǎn)是上底面內(nèi)一點(diǎn),且平面,則的最小值是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】向50名學(xué)生調(diào)查對A、B兩事件的態(tài)度,有如下結(jié)果:贊成A的人數(shù)是全體的五分之三,其余的不贊成,贊成B的比贊成A的多3人,其余的不贊成;另外,對A、B都不贊成的學(xué)生數(shù)比對A、B都贊成的學(xué)生數(shù)的三分之一多1人. 問對A、B都贊成的學(xué)生有____________人
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com