精英家教網 > 高中數學 > 題目詳情

【題目】已知向量 =(﹣3,1), =(1,﹣2), = +k (k∈R).
(1)若 與向量2 垂直,求實數k的值;
(2)若向量 =(1,﹣1),且 與向量k + 平行,求實數k的值.

【答案】
(1)解: = +k =(﹣3+k,1﹣2k),2 =(﹣7,4).

與向量2 垂直,∴ (2 )=﹣7(﹣3+k)+4(1﹣2k)=0,解得k=


(2)解:k + =(k+1,﹣2k﹣1),∵ 與向量k + 平行,

∴(﹣2k﹣1)(﹣3+k)﹣(1﹣2k)(k+1)=0,解得k=


【解析】(1)由 與向量2 垂直,可得 (2 )=0,解得k.(2)利用向量共線定理即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】圓(x+1)2+y2=8內有一點P(﹣1,2),AB過點P,
(1)若弦長 ,求直線AB的傾斜角;
(2)若圓上恰有三點到直線AB的距離等于 ,求直線AB的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知△ABC中.
(1)設 = ,求證:△ABC是等腰三角形;
(2)設向量 =(2sinC,﹣ ), =(sin2C,2cos2 ﹣1),且 ,若sinA= ,求sin( ﹣B)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AA1=1,AB=AD=2,E,F分別是棱AB,BC的中點.證明A1 , C1 , F,E四點共面,并求直線CD1與平面A1C1FE所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設f(x)是定義在R上的函數,f(0)=2,對任意x∈R,f(x)+f′(x)>1,則不等式exf(x)>ex+1的解集為(
A.(0,+∞)
B.(﹣∞,0)
C.(﹣∞,﹣1)∪(1,+∞)
D.(﹣∞,﹣1)∪(0,1)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=( x﹣2x
(1)若f(x)= ,求x的值;
(2)若不等式f(2m﹣mcosθ)+f(﹣1﹣cosθ)<f(0)對所有θ∈[0, ]都成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】定義在R上的偶函數f(x)滿足f(x)+f(x+1)=0,且在[﹣3,﹣2]上f(x)=2x+5,A、B是三邊不等的銳角三角形的兩內角,則下列不等式正確的是(
A.f(sinA)>f(sinB)
B.f(cosA)>f(cosB)
C.f(sinA)>f(cosB)
D.f(sinA)<f(cosB)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點P是圓F1:(x+1)2+y2=16上任意一點(F1是圓心),點F2與點F1關于原點對稱.線段PF2的中垂線m分別與PF1、PF2交于M、N兩點.
(1)求點M的軌跡C的方程;
(2)直線l經過F2 , 與拋物線y2=4x交于A1 , A2兩點,與C交于B1 , B2兩點.當以B1B2為直徑的圓經過F1時,求|A1A2|.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線C: =1,點M與曲線C的焦點不重合,若點M關于曲線C的兩個焦點的對稱點分別為A,B,M,N是坐標平面內的兩點,且線段MN的中點P恰好在雙曲線C上,則|AN﹣BN|=

查看答案和解析>>

同步練習冊答案