橢圓的一個(gè)焦點(diǎn)為,則等于          .
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分15分)
如圖,橢圓方程為,為橢圓上的動(dòng)點(diǎn),為橢圓的兩焦點(diǎn),當(dāng)點(diǎn)不在軸上時(shí),過的外角平分線的垂線,垂足為,當(dāng)點(diǎn)軸上時(shí),定義重合。

(Ⅰ)求點(diǎn)的軌跡的方程;
(Ⅱ)已知、,試探究是否存在這樣的點(diǎn):點(diǎn)是軌跡內(nèi)部的整點(diǎn)(平面內(nèi)橫、縱坐標(biāo)均為整數(shù)的點(diǎn)稱為整點(diǎn)),且的面積?若存在,求出點(diǎn)的坐標(biāo),若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

給定橢圓C:,稱圓心在原點(diǎn)O、半徑為的圓是橢圓C的“伴橢圓” ,若橢圓C的一個(gè)焦點(diǎn)為,其短軸上的一個(gè)端點(diǎn)到距離為;
(1)、求橢圓C的方程及其“伴橢圓”的方程;
(2)、若傾斜角為的直線與橢圓C只有一個(gè)公共點(diǎn),且與橢圓C的“伴橢圓”相交于M、N兩點(diǎn),求弦MN的長。
(3)、若點(diǎn)P是橢圓C“伴橢圓”上一動(dòng)點(diǎn),過點(diǎn)P作直線,使得與橢圓C都只有一個(gè)公共點(diǎn),求證:。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓,分別為左,右焦點(diǎn),離心率為,點(diǎn)在橢圓上,, ,過與坐標(biāo)軸不垂直的直線交橢圓于兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)在線段上是否存在點(diǎn),使得以線段為鄰邊的四邊形是菱形?若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知橢圓C:的左、右焦點(diǎn)分別為F1 ,F2,若橢圓上總存在點(diǎn)P,使得點(diǎn)P在以F1,F2為直徑的圓上.
(1) 求橢圓離心率的取值范圍;
(2) 若AB是橢圓C的任意一條不垂直x軸的弦,M為弦的中點(diǎn),且滿足
(其中分別表示直線AB、OM的斜率,0為坐標(biāo)原點(diǎn)),求滿足題意的橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的中心是原點(diǎn)O,它的短軸長為,相應(yīng)于焦點(diǎn)F(c,0)(c>0)的準(zhǔn)線與x軸相交于點(diǎn)A,,過點(diǎn)A的直線與橢圓相交于P,Q兩點(diǎn),
(1)求橢圓的離心率及方程。
(2)若·,求直線PQ的方程。
(3)設(shè),過點(diǎn)P且平行于準(zhǔn)線l的直線與橢圓相交于另一點(diǎn)M,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分12分)

如圖,已知橢圓方程,
F1、F2分別為橢圓的左、右焦點(diǎn),A
橢圓的一頂點(diǎn),直線AF2交橢圓于點(diǎn)B
(1)若∠F1AB90°,求橢圓的離心率;
(2)若橢圓的焦距為2,且
求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,過橢圓上的動(dòng)點(diǎn)的兩條切線,其中分別為切點(diǎn),,若橢圓上存在點(diǎn),使,則該橢圓的離心率為____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的左右焦點(diǎn)為F1,F(xiàn)2,點(diǎn)P在橢圓上,且|PF1|=6,則=

查看答案和解析>>

同步練習(xí)冊(cè)答案