(本小題滿分15分)
若S是公差不為0的等差數(shù)列的前n項和,且成等比數(shù)列。
(1)求等比數(shù)列的公比;
(2)若,求的通項公式;
(3)在(2)的條件下,設(shè),是數(shù)列的前n項和,求使得對所有都成立的最小正整數(shù)。
(1)4;(2);(3)30.
解析試題分析:∵數(shù)列{an}為等差數(shù)列,∴,
∵S1,S2,S4成等比數(shù)列, ∴ S1·S4 =S22
∴ ,∴
∵公差d不等于0,∴ ---------2分
(1) -------------4分
(2)∵S2 =4,∴,又,
∴, ∴。 ----------8分
(3)∵ -------9分
∴… ----11分
要使對所有恒成立,∴,, ---------13分
∵, ∴的最小值為30。 ---------14分
考點:等比數(shù)列的性質(zhì);等差數(shù)列的性質(zhì);通項公式的求法;前n項和的求法。
點評:常見的裂項公式:,,,,,
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列滿足,;數(shù)列滿足, .
(1)求數(shù)列和的通項公式;
(2)求數(shù)列、的前項和,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知Sn為數(shù)列{an}的前n項和,a1=9,Sn=n2an-n2(n-1),設(shè)bn=
(1)求證:bn-bn-1="n" (n≥2,n∈N).
(2)求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知等差數(shù)列的前項和為,前項和為.
1)求數(shù)列的通項公式
2)設(shè), 求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在等差數(shù)列中,,其前項和為,等比數(shù)列的各項均為正數(shù),,公比為,且, .
(Ⅰ)求與;
(Ⅱ)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)設(shè)數(shù)列的前項和為,已知, (為常數(shù),),且成等差數(shù)列.
(1) 求的值;
(2) 求數(shù)列的通項公式;
(3) 若數(shù)列 是首項為1,公比為的等比數(shù)列,記
.求證: ,().
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分12分)等比數(shù)列中,已知。(1)求數(shù)列的通項公式;(2)已知數(shù)列是等差數(shù)列,且和的第2項、第4項分別相等。若數(shù)列的前項和,求的值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(理科題)(本小題12分)
已知數(shù)列{an}是等差數(shù)列,a2=3,a5=6,數(shù)列{bn}的前n項和是Tn,且Tn+bn=1.
(1)求數(shù)列{an}的通項公式與前n項的和;
(2)求數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知正項等差數(shù)列的前項和為,若,且成等比數(shù)列.
(1)求的通項公式;
(2)記的前項和為,求證.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com