【題目】已知a,b,c,d為實(shí)數(shù),且a2+b2=4,c2+d2=16,證明ac+bd≤8.

【答案】證明:∵a2+b2=4,c2+d2=16,
令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.
∴ac+bd=8(cosαcosβ+sinαsinβ)=8cos(α﹣β)≤8.當(dāng)且僅當(dāng)cos(α﹣β)=1時(shí)取等號.
因此ac+bd≤8.
【解析】a2+b2=4,c2+d2=16,令a=2cosα,b=2sinα,c=4cosβ,d=4sinβ.代入ac+bd化簡,利用三角函數(shù)的單調(diào)性即可證明.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用同角三角函數(shù)基本關(guān)系的運(yùn)用和兩角和與差的余弦公式的相關(guān)知識可以得到問題的答案,需要掌握同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:;兩角和與差的余弦公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】表示大于的整數(shù)的十位數(shù),例如,.已知,,都是大于的互不相等的整數(shù),現(xiàn)有如下個(gè)命題:

①若,則;②,;

③若是質(zhì)數(shù),則也是質(zhì)數(shù);④若,,成等差數(shù)列,則,,可能成等比數(shù)列.

其中所有的真命題為( )

A. B. ③④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,輸出的S值為( 。

A.2
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】元旦期間,某轎車銷售商為了促銷,給出了兩種優(yōu)惠方案,顧客只能選擇其中的一種,方案一:每滿萬元,可減千元;方案二:金額超過萬元(含萬元),可搖號三次,其規(guī)則是依次裝有個(gè)幸運(yùn)號、個(gè)吉祥號的一個(gè)搖號機(jī),裝有個(gè)幸運(yùn)號、個(gè)吉祥號的二號搖號機(jī),裝有個(gè)幸運(yùn)號、個(gè)吉祥號的三號搖號機(jī)各搖號一次,其優(yōu)惠情況為:若搖出個(gè)幸運(yùn)號則打折,若搖出個(gè)幸運(yùn)號則打折;若搖出個(gè)幸運(yùn)號則打折;若沒有搖出幸運(yùn)號則不打折.

(1)若某型號的車正好萬元,兩個(gè)顧客都選中第二中方案,求至少有一名顧客比選擇方案一更優(yōu)惠的概率;

(2)若你評優(yōu)看中一款價(jià)格為萬的便型轎車,請用所學(xué)知識幫助你朋友分析一下應(yīng)選擇哪種付款方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a>0,b>0,a3+b3=2,證明:
(Ⅰ)(a+b)(a5+b5)≥4;
(Ⅱ)a+b≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某班學(xué)生的腳長x(單位:厘米)和身高y(單位:厘米)的關(guān)系,從該班隨機(jī)抽取10名學(xué)生,根據(jù)測量數(shù)據(jù)的散點(diǎn)圖可以看出y與x之間有線性相關(guān)關(guān)系,設(shè)其回歸直線方程為 = x+ ,已知 xi=225, yi=1600, =4,該班某學(xué)生的腳長為24,據(jù)此估計(jì)其身高為(  )
A.160
B.163
C.166
D.170

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量ξi滿足P(ξi=1)=pi , P(ξi=0)=1﹣pi , i=1,2.若0<p1<p2 ,則( )
A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2
B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2
C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2
D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某大學(xué)餐飲中心為了解新生的飲食習(xí)慣,在全校一年級學(xué)生中進(jìn)行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計(jì)

南方學(xué)生

60

20

80

北方學(xué)生

10

10

20

合計(jì)

70

30

100

(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認(rèn)為南方學(xué)生和北方學(xué)生在選用甜品的飲食習(xí)慣方面有差異”;

(2)已知在被調(diào)查的北方學(xué)生中有5名數(shù)學(xué)系的學(xué)生,其中2名喜歡甜品.現(xiàn)在從這5名學(xué)生中隨機(jī)抽取3人,求至多有1人喜歡甜品的概率.

附:.

P(χ2k)

0.100

0.050

0.010

k

2.706

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)=(ax2+ax+x+a)ex(a≤0).
(1)討論y=f(x)的單調(diào)性;
(2)當(dāng)a=0時(shí),若f(x1)=f(x2) (x1≠x2),求證x1+x2>2.

查看答案和解析>>

同步練習(xí)冊答案