【題目】已知函數(shù).
(1)討論函數(shù)的極值點(diǎn)的個(gè)數(shù);
(2)當(dāng)函數(shù)有兩個(gè)極值點(diǎn),時(shí),求證:.
【答案】(1)分類(lèi)討論,詳見(jiàn)解析;(2)詳見(jiàn)解析.
【解析】
(1)對(duì)求導(dǎo)得,令,再對(duì)求導(dǎo),根據(jù)的取值范圍確定的正負(fù),即可得解;
(2)不妨設(shè),由題意,對(duì)函數(shù)求導(dǎo)后可得即,由、單調(diào)性可得,再令,求導(dǎo)后可得,即可得證.
(1),.
設(shè),則.
令,解得.
當(dāng)時(shí),;當(dāng)時(shí),.
.
當(dāng)時(shí),,函數(shù)單調(diào)遞增,沒(méi)有極值點(diǎn);
當(dāng)時(shí),,
且當(dāng)時(shí),;當(dāng)時(shí),.
當(dāng)時(shí),有兩個(gè)零點(diǎn),即函數(shù)有兩個(gè)極值點(diǎn).
綜上,當(dāng)時(shí),函數(shù)的極值點(diǎn)的個(gè)數(shù)為0;當(dāng)時(shí),函數(shù)的極值點(diǎn)的個(gè)數(shù)為2.
(2)由(1)知,、為的兩個(gè)實(shí)數(shù)根,不妨設(shè),在上單調(diào)遞減.
下面先證,只需證.
,
得,.
設(shè),,
則,在上單調(diào)遞減,
,,.
函數(shù)在上也單調(diào)遞減,.
要證,只需證,
即證.
設(shè)函數(shù),,則.
設(shè),則.
在上單調(diào)遞增,,即.
在上單調(diào)遞增,.
當(dāng)時(shí),,
,.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們把活躍網(wǎng)店數(shù)量較多的村莊稱為淘寶村,隨著電子商務(wù)在中國(guó)的發(fā)展,不少農(nóng)村出現(xiàn)了一批專(zhuān)業(yè)的淘寶村,已知某鄉(xiāng)鎮(zhèn)有多個(gè)淘寶村,現(xiàn)從該鄉(xiāng)鎮(zhèn)淘寶村中隨機(jī)抽取家商戶,統(tǒng)計(jì)他們某一周的銷(xiāo)售收入,結(jié)果統(tǒng)計(jì)如下:
銷(xiāo)售收入(收入) | ||||
商戶數(shù) |
(1)從這家商戶中按該周銷(xiāo)售收入超過(guò)萬(wàn)元與不超過(guò)萬(wàn)元分為組,按分層抽樣從中抽取家參加經(jīng)驗(yàn)交流會(huì),并從這家中選家進(jìn)行發(fā)言,求選出的家恰有家銷(xiāo)售收入超過(guò)萬(wàn)元的概率;
(2)若這家商戶中有家商戶入駐兩家網(wǎng)購(gòu)平臺(tái),其中家銷(xiāo)售收入高于萬(wàn)元,完成下面的列聯(lián)表,并判斷能否有的把握認(rèn)為“銷(xiāo)售收入是否高于萬(wàn)元與入駐兩家網(wǎng)購(gòu)平臺(tái)有關(guān)”?
入駐兩家網(wǎng)購(gòu)平臺(tái) | 僅入駐一家網(wǎng)購(gòu)平臺(tái) | 合計(jì) | |
銷(xiāo)售收入高于萬(wàn)元 | |||
銷(xiāo)售收入不高于萬(wàn)元 | |||
合計(jì) |
附:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的兩個(gè)焦點(diǎn)為、,是與的等差中項(xiàng),其中、、都是正數(shù),過(guò)點(diǎn)和的直線與原點(diǎn)的距離為.
(1)求橢圓的方程;
(2)點(diǎn)是橢圓上一動(dòng)點(diǎn),定點(diǎn),求△面積的最大值;
(3)已知定點(diǎn),直線與橢圓交于、相異兩點(diǎn).證明:對(duì)任意的,都存在實(shí)數(shù),使得以線段為直徑的圓過(guò)點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(1)求函數(shù)的極值;
(2)對(duì),不等式都成立,求整數(shù)k的最大值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若有兩個(gè)極值點(diǎn),當(dāng)時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三棱錐的四個(gè)頂點(diǎn)在球的球面上,,是邊長(zhǎng)為正三角形,分別是的中點(diǎn),,則球的體積為_________________。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的短軸長(zhǎng)為2,離心率,
(1)求橢圓方程;
(2)若直線與橢圓交于不同的兩點(diǎn),與圓相切于點(diǎn),
①證明:(其中為坐標(biāo)原點(diǎn));
②設(shè),求實(shí)數(shù)的取值范圍..
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司收取快遞費(fèi)用的標(biāo)準(zhǔn)是:重量不超過(guò)的包裹收費(fèi)元;重量超過(guò)的包裹,除收費(fèi)元之外,超過(guò)的部分,每超出(不足,按計(jì)算)需再收元.該公司將最近承攬的件包裹的重量統(tǒng)計(jì)如下:
包裹重量(單位: ) | |||||
包裹件數(shù) |
公司對(duì)近天,每天攬件數(shù)量統(tǒng)計(jì)如下表:
包裹件數(shù)范圍 | |||||
包裹件數(shù) (近似處理) | |||||
天數(shù) |
以上數(shù)據(jù)已做近似處理,并將頻率視為概率.
(1)計(jì)算該公司未來(lái)天內(nèi)恰有天攬件數(shù)在之間的概率;
(2)(i)估計(jì)該公司對(duì)每件包裹收取的快遞費(fèi)的平均值;
(ii)公司將快遞費(fèi)的三分之一作為前臺(tái)工作人員的工資和公司利潤(rùn),剩余的用作其他費(fèi)用.目前前臺(tái)有工作人員人,每人每天攬件不超過(guò)件,工資元.公司正在考慮是否將前臺(tái)工作人員裁減人,試計(jì)算裁員前后公司每日利潤(rùn)的數(shù)學(xué)期望,并判斷裁員是否對(duì)提高公司利潤(rùn)更有利?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技的發(fā)展,網(wǎng)購(gòu)已經(jīng)逐漸融入了人們的生活.在家里面不用出門(mén)就可以買(mǎi)到自己想要的東西,在網(wǎng)上付款即可,兩三天就會(huì)送到自己的家門(mén)口,如果近的話當(dāng)天買(mǎi)當(dāng)天就能送到,或者第二天就能送到,所以網(wǎng)購(gòu)是非常方便的購(gòu)物方式.某公司組織統(tǒng)計(jì)了近五年來(lái)該公司網(wǎng)購(gòu)的人數(shù)(單位:人)與時(shí)間(單位:年)的數(shù)據(jù),列表如下:
1 | 2 | 3 | 4 | 5 | |
24 | 27 | 41 | 64 | 79 |
(1)依據(jù)表中給出的數(shù)據(jù),是否可用線性回歸模型擬合與的關(guān)系,請(qǐng)計(jì)算相關(guān)系數(shù)并加以說(shuō)明(計(jì)算結(jié)果精確到0.01).(若,則線性相關(guān)程度很高,可用線性回歸模型擬合)
附:相關(guān)系數(shù)公式 ,參考數(shù)據(jù).
(2)建立關(guān)于的回歸方程,并預(yù)測(cè)第六年該公司的網(wǎng)購(gòu)人數(shù)(計(jì)算結(jié)果精確到整數(shù)).
(參考公式: ,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com