若存在常數(shù)k和b,使得函數(shù)f(x)和g(x)在它們的公共定義域上的任意實數(shù)x分別滿足:
f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為函數(shù)f(x)和g(x)的“隔離直線”.已知f(x)=x2,g(x)=2elnx.
(I)求F(x)=f(x)﹣g(x)的極值;
(II)函數(shù)f(x)和g(x)是否存在隔離直線?若存在,求出此隔離直線的方程,若不存在,請說明理由.
解:(1)∵F(x)=f(x)﹣g(x)=x2﹣2clnx(x>0),
∴F′(x)=2x﹣ =(2x2﹣2c)/x= 
令F′(x)=0,得x= ,
當0<x< 時,F(xiàn)′(x)<0,
X> 時,F(xiàn)′(x)>0
故當x= 時,F(xiàn)(x)取到極小值,極小值是0
(2)由(1)可知,函數(shù)f(x)和g(x)的圖象在x= 處有公共點,
因此存在f(x)和g(x)的隔離直線,那么該直線過這個公共點,
設(shè)隔離直線的斜率為k.則隔離直線方程為y﹣e=k(x﹣ ),即y=kx﹣k +e
由f(x)≥kx﹣k +e(x∈R),可得x2﹣kx﹣k+e,
由f(x)≥kx﹣k +e(x∈R),可得x2﹣kx+k ﹣e≥0
當x∈R恒成立,則△=k2﹣4k +4e=(k﹣2 )2≤0,只有k=2 ,
此時直線方程為:y=2 x﹣e,
下面證明g(x)≤2 x﹣eexx>0時恒成立
令G(x)=2x﹣e﹣g(x)=2 x﹣e﹣2elnx,
G′(x)=2  =(2 x﹣2c)/x=2 (x﹣ )/x,
當x= 時,G′(X)=0,
當0<x< 時G′(X)>0,
則當x= 時,G(x)取到最小值,極小值是0,也是最小值.
所以G(x)=2 x﹣e﹣g(x)≥0,則g(x)≤2 x﹣e當x>0時恒成立.
∴函數(shù)f(x)和g(x)存在唯一的隔離直線y=2 x﹣e
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)已知函數(shù)f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x0∈(1,+∞),使g(x0)=g(
1
2
)
;
(Ⅲ)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若存在實常數(shù)k和b,使函數(shù)f(x)和g(x)對其定義域上的任意實數(shù)x恒有:f(x)≥kx+b和g(x)≤kx+b,則稱直線l:y=kx+b為f(x)和g(x)的“隔離直線”.已知h(x)=x2,φ(x)=2elnx,則可推知h(x),φ(x)的“隔離直線”方程為
y=2
e
x-e
y=2
e
x-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)求證:“{an}是等差數(shù)列”的充要條件是“存在常數(shù)k和b,使an=kn+b對一切n∈N*都成立”;
(2)試問:是否存在等差數(shù)列{an}滿足an=an2-nan+1(n∈N*)?若存在,請求出通項公式;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省高三12月練習(xí)數(shù)學(xué)試卷 題型:填空題

若存在實常數(shù)k和b,使函數(shù)對其定義域上的任意實數(shù)x恒有:

,則稱直線 的“隔離直線”。

已知,則可推知的“隔離直線”方程為   ▲     

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年山東省臨沂市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(Ⅰ)求函數(shù)g(x)的極大值.
(Ⅱ)求證:存在x∈(1,+∞),使
(Ⅲ)對于函數(shù)f(x)與h(x)定義域內(nèi)的任意實數(shù)x,若存在常數(shù)k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,則稱直線y=kx+b為函數(shù)f(x)與h(x)的分界線.試探究函數(shù)f(x)與h(x)是否存在“分界線”?若存在,請給予證明,并求出k,b的值;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案