【題目】古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家研究過各種多邊形數(shù),如三角形數(shù)1,3,6,10,…,第n個三角形數(shù)為 .記第n個k邊形數(shù)為N(n,k)(k≥3),以下列出了部分k邊形數(shù)中第n個數(shù)的表達(dá)式:
三角形數(shù) ,
正方形數(shù)N(n,4)=n2 ,
五邊形數(shù) ,
六邊形數(shù)N(n,6)=2n2﹣n,
…
可以推測N(n,k)的表達(dá)式,由此計算N(10,24)= .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將函數(shù)的圖像向右平衡個單位長度,再把圖象上所有點的橫坐標(biāo)伸長到原來的倍(縱坐標(biāo)不變)得到函數(shù)的圖象,則下列說法正確的是( )
A.函數(shù)的最大值為B.函數(shù)的最小正周期為
C.函數(shù)的圖象關(guān)于直線對稱D.函數(shù)在區(qū)間上單調(diào)遞增
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校為了了解該校學(xué)生對于某項運動的愛好是否與性別有關(guān),通過隨機(jī)抽查110名學(xué)生,得到如下的列聯(lián)表:
喜歡該項運動 | 不喜歡該項運動 | 總計 | |
男 | 40 | 20 | 60 |
女 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由公式,算得
附表:
0.025 | 0.01 | 0.005 | |
5.024 | 6.635 | 7.879 |
參照附表,以下結(jié)論正確的是( )
A. 在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
B. 在犯錯語的概率不超過0.1%的前提下,認(rèn)為“愛好該項運動與性別有關(guān)”
C. 有99%以上的把握認(rèn)為“愛好該項運動與性別無關(guān)”
D. 有99%以上的把握認(rèn)為“愛好該項運動與性別有關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求曲線在點處的切線方程;
(2)在(1)的條件下,求證:;
(3)當(dāng)時,求函數(shù)在上的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本小題滿分12分)
已知函數(shù),其中.
(Ⅰ)當(dāng)時,求曲線在點處的切線方程;
(Ⅱ)當(dāng)時,求函數(shù)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在底面為矩形的四棱錐中,,,且,其中分別是線段的中點。
(1)證明:平面
(2)證明:平面
(3)求:直線與平面所成角的正弦值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為 (t為參數(shù)),C在點(1,1)處的切線為l,以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,則l的極坐標(biāo)方程為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對某種書籍每冊的成本費(元)與印刷冊數(shù)(千冊)的數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值.
4.83 | 4.22 | 0.3775 | 60.17 | 0.60 | -39.38 | 4.8 |
表中,.
為了預(yù)測印刷20千冊時每冊的成本費,建立了兩個回歸模型:,.
(1)根據(jù)散點圖,你認(rèn)為選擇哪個模型預(yù)測更可靠?(只選出模型即可)
(2)根據(jù)所給數(shù)據(jù)和(1)中選擇的模型,求關(guān)于的回歸方程,并預(yù)測印刷20千冊時每冊的成本費.
附:對于一組數(shù)據(jù),,…,,其回歸方程的斜率和截距的最小二乘估計公式分別為:,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com