三位同學(xué)在研究函數(shù)(x∈R) 時(shí),分別給出下面三個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)?nbsp;(-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)結(jié)論中正確的個(gè)數(shù)有   
【答案】分析:函數(shù)化為分段函數(shù)即函數(shù)∵f(-x)=-f(x)∴函數(shù)為奇函數(shù),從而判斷函數(shù)當(dāng)x≥0時(shí)的性質(zhì)即可,由值域和單調(diào)性可得①②正確,③的正確性可用數(shù)學(xué)歸納法證明
解答:解:函數(shù)化為分段函數(shù)即函數(shù)
∵f(-x)=-f(x)
∴函數(shù)為奇函數(shù),
∵x≥0時(shí),f(x)==∈[0,1)
∴函數(shù)f(x)的值域?yàn)?nbsp;(-1,1),故①正確
∵x≥0時(shí),f(x)==為[0,+∞)的單調(diào)增函數(shù)
∴函數(shù)f(x)為R上的單調(diào)增函數(shù),
∴若x1≠x2,則一定有f(x1)≠f(x2),故②正確
下面用數(shù)學(xué)歸納法證明③正確
證明:n=1時(shí),命題顯然成立;
假設(shè)n=k時(shí)命題成立,即
則n=k+1時(shí),fk+1(x)=f(fk(x))===
即n=k+1時(shí)命題成立
對任意n∈N*恒成立
故答案為3
點(diǎn)評:本題考查了函數(shù)的值域的求法,函數(shù)單調(diào)性的定義及判斷方法,函數(shù)與數(shù)列的綜合,解題時(shí)要緊緊抓住函數(shù)的奇偶性解決問題
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2009•南匯區(qū)二模)三位同學(xué)在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時(shí),分別給出下面三個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)?nbsp;(-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)結(jié)論中正確的個(gè)數(shù)有
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:南匯區(qū)二模 題型:填空題

三位同學(xué)在研究函數(shù)f(x)=
x
1+|x|
(x∈R) 時(shí),分別給出下面三個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)?nbsp;(-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則fn(x)=
x
1+n|x|
對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)結(jié)論中正確的個(gè)數(shù)有______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省內(nèi)江市威遠(yuǎn)中學(xué)高三選填題強(qiáng)化訓(xùn)練13(理科)(解析版) 題型:解答題

三位同學(xué)在研究函數(shù)(x∈R) 時(shí),分別給出下面三個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)?nbsp;(-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)結(jié)論中正確的個(gè)數(shù)有   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009年上海市南匯區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

三位同學(xué)在研究函數(shù)(x∈R) 時(shí),分別給出下面三個(gè)結(jié)論:
①函數(shù)f(x)的值域?yàn)?nbsp;(-1,1)
②若x1≠x2,則一定有f(x1)≠f(x2
③若規(guī)定f1(x)=f(x),fn+1(x)=f[fn(x)],則對任意n∈N*恒成立.
你認(rèn)為上述三個(gè)結(jié)論中正確的個(gè)數(shù)有   

查看答案和解析>>

同步練習(xí)冊答案