設函數(shù)f(x)=ax2+bx+c(a,b,c∈R).若x=-1為函數(shù)f(x)ex的一個極值點,則下列圖象不可能為y=f(x)的圖象是
D
【解析】
試題分析:由y=f(x)ex=ex(ax2+bx+c)?y'=f'(x)ex+exf(x)=ex[ax2+(b+2a)x+b+c],
由x=-1為函數(shù)f(x)ex的一個極值點可得,-1是方程ax2+(b+2a)x+b+c=0的一個根,
所以有a-(b+2a)+b+c=0?c=a.
法一:所以函數(shù)f(x)=ax2+bx+a,對稱軸為x=-,且f(-1)=2a-b,f(0)=a.
對于A,由圖得a>0,f(0)>0,f(-1)=0符合要求,
對于B,由圖得a<0,f(0)<0,f(-1)=0不矛盾,
對于C,由圖得a<0,f(0)<0,x=->0得到b>0,f(-1)<0不矛盾,
對于D,由圖得a>0,f(0)>0,x=-<-1得到b>2a,f(-1)<0于圖中f(-1)>0矛盾,D不對.
法二:得到函數(shù)f(x)=ax2+bx+a,由此得函數(shù)相應方程的兩根之積為1,對照四個選項發(fā)現(xiàn),D不成立,故選 D.
考點:本題主要考查應用導數(shù)研究函數(shù)的極值,二次函數(shù)圖象和性質(zhì)。
點評:易錯題,本題要求“不可能”為的圖象。研究函數(shù)的單調(diào)性、極值是導數(shù)的基本應用,方法明確,步驟規(guī)范。
科目:高中數(shù)學 來源:2012年普通高等學校招生全國統(tǒng)一考試全國卷數(shù)學理科 題型:044
設函數(shù)f(x)=ax+cosx,x∈[0,π].
(1)討論f(x)的單調(diào)性;
(2)設f(x)≤1+sinx,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省杭州十四中2012屆高三3月月考數(shù)學文科試題 題型:044
設函數(shù)f(x)=ax-lnx-3(a∈R),g(x)=.
(Ⅰ)若函數(shù) g(x)的圖象在點(0,0)處的切線也恰為f(x)圖象的一條切線,求實數(shù)a的值;
(Ⅱ)是否存在實數(shù)a,對任意的x∈(0,e],都有唯一的x0∈[e-4,e],使得f(x0)=g(x)成立.若存在,求出a的取值范圍;若不存在,請說明理由.注:e是自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:新課標高三數(shù)學集合與簡易邏輯專項訓練(河北) 題型:解答題
設函數(shù)f(x)=ax+2,
不等式|f(x)|<6的解集為(-1,2),
試求不等式≤1的解集.
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省高三3月月考理科數(shù)學試卷(解析版) 題型:解答題
設函數(shù) f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函數(shù) g(x) 的圖象在點 (0,0) 處的切線也恰為 f (x) 圖象的一條切線,求實數(shù) a的值;
(Ⅱ)是否存在實數(shù)a,對任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范圍;若不存在,請說明理由.
注:e是自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年山東省高三單元測試文科數(shù)學試卷 題型:解答題
設函數(shù)f(x)=ax+ (a,b∈Z),曲線y=f(x)在點(2,f(2))處的切線方
程為y=3.
(1)求f(x)的解析式;
(2)證明:曲線y=f(x)上任一點的切線與直線x=1和直線y=x所圍三角形的面積為定值,
并求出此定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com