如圖所示,已知圓O1與圓O2外切,它們的半徑分別為3、1,圓C與圓O1、圓O2外切.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求圓C的圓心的軌跡方程;
(2)在(1)的坐標(biāo)系中,若圓C的半徑為1,求圓C的方程.

【答案】分析:(1)根據(jù)求曲線的軌跡方程常采用的方法定義法,由|CO1|-|CO2|=2即可得圓心的軌跡方程;
(2)欲求圓C的方程,關(guān)鍵是求其圓心的坐標(biāo),令C(x,y),由圓C與圓O1、O2相切得關(guān)于x,y的方程組解之即得.
解答:解:(1)如圖,以O(shè)1O2所在的直線為x軸,以O(shè)1O2的中垂線
所在的直線為y軸,建立平面直角坐標(biāo)系.設(shè)圓C的圓心
為C(x,y),半徑為r,由|CO1|-|CO2|=(r+3)-(r+1)=2,
得圓C的圓心的軌跡是以O(shè)1(-2,0),O2(2,0)為焦點(diǎn),
定長為2的雙曲線,設(shè)它的方程為.由2a=2,得a=1,
又c=2,∴b2=c2-a2=3.又點(diǎn)(1,0)不合題意,且|CO1|-|CO2|=2>0,知x>1.
∴圓C的圓心的軌跡方程是(x>1).
(2)令C(x,y),由圓C與圓O1、O2相切得|CO1|=4,|CO2|=2,
,解得,
∴圓C的方程為
點(diǎn)評:求曲線的軌跡方程是解析幾何的基本問題.求符合某種條件的動點(diǎn)的軌跡方程,其實(shí)質(zhì)就是利用題設(shè)中的幾何條件,用“坐標(biāo)化”將其轉(zhuǎn)化為尋求變量間的關(guān)系.定義法,若動點(diǎn)軌跡的條件符合某一基本軌跡的定義(如橢圓、雙曲線、拋物線、圓等),可用定義直接探求.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

14、如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(I)求證:AD∥EC;
(II)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,已知圓O1與圓O2外切,它們的半徑分別為3、1,圓C與圓O1、圓O2外切.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求圓C的圓心的軌跡方程;
(2)在(1)的坐標(biāo)系中,若圓C的半徑為1,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年銀川一中一模) (10分) 如圖所示,已知⊙O1與⊙O2相交于A,B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1,⊙O2于點(diǎn)D,E,DE與AC相交于點(diǎn)P.

   (1)求證:AD∥EC;

   (2)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長;

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年黑龍江省哈爾濱三中高考數(shù)學(xué)一模試卷(文科)(解析版) 題型:解答題

如圖所示,已知⊙O1與⊙O2相交于A、B兩點(diǎn),過點(diǎn)A作⊙O1的切線交⊙O2于點(diǎn)C,過點(diǎn)B作兩圓的割線,分別交⊙O1、⊙O2于點(diǎn)D、E,DE與AC相交于點(diǎn)P.
(I)求證:AD∥EC;
(II)若AD是⊙O2的切線,且PA=6,PC=2,BD=9,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案