如圖,在四棱錐中,底面是菱形,,且側(cè)面平面,點是棱的中點.

(Ⅰ)求證:平面
(Ⅱ)求證:;
(Ⅲ)若,求證:平面平面.
詳見解析.

試題分析:(Ⅰ)由底面是菱形,可得再根據(jù)線面平行的性質(zhì)定理可直接證得平面。(Ⅱ)由面面垂直的性質(zhì)定理可證得平面,即可證得。(Ⅲ)當為正三角形,可得,可根據(jù)面的性質(zhì)定理證得,再根據(jù)面面垂直的判定定理可證得面平面。法二時,因為(Ⅱ)中已證,根據(jù)線面垂直的判定定理可得平面,從而證得面平面
試題解析:解:(Ⅰ)因為底面是菱形,
所以.             1分
又因為平面,        3分
所以平面.           4分
(Ⅱ)因為,點是棱的中點,

所以.                                          5分
因為平面平面,平面平面,平面,       7分
所以平面,                                   8分
因為平面,
所以.                                        9分
(Ⅲ)因為,點是棱的中點,
所以.                                          10分
由(Ⅱ)可得,                               11分
所以平面,                                   13分
又因為平面,
所以平面平面.                               14分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,平面,,,的中點.

(1)求證:平面
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在四棱錐P-ABCD中,PA⊥平面ABCD,AD⊥AB,△ABC是正三角形,AC與BD的交點M恰好是AC中點,N為線段PB的中點,G在線段BM上,且

(Ⅰ)求證:AB⊥PD;
(Ⅱ)求證:GN//平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知:如圖,等腰直角三角形的直角邊,沿其中位線將平面折起,使平面⊥平面,得到四棱錐,設(shè)、、的中點分別為、、.

(1)求證:、四點共面;
(2)求證:平面平面;
(3)求異面直線所成的角.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,四棱錐的底面為矩形,且,,,,

(Ⅰ)平面PAD與平面PAB是否垂直?并說明理由;
(Ⅱ)求直線PC與平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

在直四棱柱ABCD-A1B1C1D1中,DB=BC,DB⊥AC,點M是棱BB1上一點.

(1)求證:B1D1∥平面A1BD;
(2)求證:MD⊥AC;
(3)試確定點M的位置,使得平面DMC1⊥平面CC1D1D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

如圖,正方體的棱長為,動點P在對角線上,過點P作垂直于的平面,記這樣得到的截面多邊形(含三角形)的周長為y,設(shè)x,則當時,函數(shù)的值域為(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)是兩條不同的直線,是兩個不同的平面,下列命題中正確的是(    )
A.若,
B.若,則
C.若
D.若

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

正方體中,,分別為棱,的中點,在平面內(nèi)且與平面平行的直線(  。
A.有無數(shù)條B.有2條C.有1條D.不存在

查看答案和解析>>

同步練習冊答案