已知關于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

解:(Ⅰ)設f(x)=x2+2mx+2m+1,問題轉(zhuǎn)化為拋物線f(x)=x2+2mx+2m+1與x軸的交點分別在
區(qū)間(-1,0)和(1,2)內(nèi),則 ,可得
解得
∴m 的取值范圍為
(Ⅱ)若拋物線與x軸交點均落在區(qū)間(0,1)內(nèi),則有
,即 ,解得,
故m的取值范圍為
分析:(Ⅰ)把問題轉(zhuǎn)化為拋物線f(x)=x2+2mx+2m+1與x軸的交點分別在區(qū)間(-1,0)和(1,2)內(nèi),解不等式組 求出m的取值范.
(Ⅱ)若拋物線與x軸交點均落在區(qū)間(0,1)內(nèi),則有,由此求得m的取值范圍.
點評:本題主要考查一元二次方程根的分布與系數(shù)的關系,體現(xiàn)了轉(zhuǎn)化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知關于x的二次方程x2+2mx+2m+1=0.
(Ⅰ)若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m 的取值范圍.
(Ⅱ)若方程兩根均在區(qū)間(0,1)內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次方程x2+2mx+2m+1=0有一正一負根,則m∈
(-∞,-
1
2
(-∞,-
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次方程x2+2mx+2m+1=0,若方程有兩根,其中一根在區(qū)間(-1,0)內(nèi),另一根在區(qū)間(1,2)內(nèi),m的范圍是
(-
5
6
,-
1
2
)
(-
5
6
,-
1
2
)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a≥
1
2
,f(x)=-a2x2+ax+c.
(1)如果對任意x∈[0,1],總有f(x)≤1成立,證明c≤
3
4
;
(2)已知關于x的二次方程f(x)=0有兩個不等實根x1,x2,且x1≥0,x2≥0,求實數(shù)c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關于x的二次方程anx2-an+1x+1=0(n∈N*)的兩根α,β滿足6α-2αβ+6β=3,且a1=1
(1)試用an表示an+1;
(2)求數(shù)列的通項公式an
(3)求數(shù)列{an}的前n項和Sn.并求Sn的取值范圍.

查看答案和解析>>

同步練習冊答案