已知圓,直線經(jīng)過點(diǎn),
(1)求以線段為直徑的圓的方程;
(2)若直線與圓相交于,兩點(diǎn),且為等腰直角三角形,求直線的方程.
(1)圓的方程為;(2)直線的方程為:.

試題分析:(1)將圓化成標(biāo)準(zhǔn)方程,得圓心為,半徑為2.從而得到的中點(diǎn),得所求圓心坐標(biāo),再根據(jù)兩點(diǎn)的距離公式算出半徑,即得以線段為直徑的圓的方程;
(2)設(shè)直線的方程為:,根據(jù)題意等腰,利用點(diǎn)到直線的距離公式建立關(guān)于的等式,解之可得實(shí)數(shù)的值,得到直線的方程.
試題解析:(1)將圓的方程配方得標(biāo)準(zhǔn)方程為,則此圓的圓心為,半徑為2.所以的中點(diǎn),可得,所以,即圓的方程為;
設(shè)直線的方程為:,
,且為等腰直角三角形,
因此圓心到直線的距離
解之得,所求直線的方程為:
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分) 已知圓,點(diǎn),直線.
(1) 求與圓相切,且與直線垂直的直線方程;
(2) 在直線上(為坐標(biāo)原點(diǎn)),存在定點(diǎn)(不同于點(diǎn)),滿足:對(duì)于圓上任一點(diǎn),都有為一常數(shù),試求所有滿足條件的點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓心為的圓經(jīng)過點(diǎn).
(1)求圓的標(biāo)準(zhǔn)方程;
(2)若直線過點(diǎn)且被圓截得的線段長為,求直線的方程;
(3)是否存在斜率是1的直線,使得以被圓所截得的弦EF為直徑的圓經(jīng)過
原點(diǎn)?若存在,試求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓
(1)將圓的方程化為標(biāo)準(zhǔn)方程,并指出圓心坐標(biāo)和半徑;
(2)求直線被圓所截得的弦長。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線kx-y=k-1與ky-x=2k的交點(diǎn)位于第二象限,那么k的取值范圍是( 。
A.k>1B.0<k<
1
2
C.k<
1
2
D.
1
2
<k<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)任意實(shí)數(shù)λ,直線l1:x+λy-m-λn=0與圓C:x2+y2=r2總相交于兩不同點(diǎn),則直線l2:mx+ny=r2與圓C的位置關(guān)系是     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線ax+by+c=0與圓x2+y2=9相交于兩點(diǎn)M、N,若c2=a2+b2,則·(O為坐標(biāo)原點(diǎn))等于(  )
A.-7B.-14C.7D.14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知圓截直線所得弦的長度為4,則實(shí)數(shù)的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

[2014·太原質(zhì)檢]過點(diǎn)A(4,1)的圓C與直線x-y-1=0相切于B(2,1),則圓C的方程為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案