【題目】已知,,動點滿足直線與直線的斜率之積為,設點的軌跡為曲線.
(1)求曲線的方程;
(2)若過點的直線與曲線交于,兩點,過點且與直線垂直的直線與相交于點,求的最小值及此時直線的方程.
【答案】(1)(2)的最小值為1,此時直線:
【解析】
(1)用直接法求軌跡方程,即設動點為,把已知用坐標表示并整理即得.注意取值范圍;
(2)設:,將其與曲線的方程聯(lián)立,消元并整理得,
設,,則可得,,由求出,
將直線方程與聯(lián)立,得,求得,計算,設.顯然,構造,由導數(shù)的知識求得其最小值,同時可得直線的方程.
(1)設,則,即
整理得
(2)設:,將其與曲線的方程聯(lián)立,得
即
設,,則,
將直線:與聯(lián)立,得
∴
∴
設.顯然
構造
在上恒成立
所以在上單調遞增
所以,當且僅當,即時取“=”
即的最小值為1,此時直線:.
(注:1.如果按函數(shù)的性質求最值可以不扣分;2.若直線方程按斜率是否存在討論,則可以根據(jù)步驟相應給分.)
科目:高中數(shù)學 來源: 題型:
【題目】某城市有東、西、南、北四個進入城區(qū)主干道的入口,在早高峰時間段,時常發(fā)生交通擁堵,交警部門記錄了11月份30天內的擁堵情況(如下表所示,其中●表示擁堵,○表示通暢).假設每個人口是否發(fā)生擁堵相互獨立,將各入口在這30天內擁堵的頻率代替各入口每天擁堵的概率.
11.1 | 11.2 | 11.3 | 11.4 | 11.5 | 11.6 | 11.7 | 11.8 | 11.9 | 11.10 | 11.11 | 11.12 | 11.13 | 11.14 | 11.15 | ||||||||||||||||
東入口 | ● | ○ | ○ | ○ | ○ | ● | ○ | ● | ● | ○ | ● | ● | ● | ○ | ● | |||||||||||||||
西入口 | ○ | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ● | ○ | ○ | |||||||||||||||
南入口 | ○ | ● | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ● | ○ | ○ | ○ | ● | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
11.16 | 11.17 | 11.18 | 11.19 | 11.20 | 11.21 | 11.22 | 11.23 | 11.24 | 11.25 | 11.26 | 11.27 | 11.28 | 11.29 | 11.30 | ||||||||||||||||
東入口 | ● | ○ | ○ | ● | ○ | ○ | p>○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | |||||||||||||||
西入口 | ● | ○ | ● | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | ● | ○ | |||||||||||||||
南入口 | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ● | |||||||||||||||
北入口 | ○ | ○ | ● | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ○ | ● | ○ | |||||||||||||||
(1)分別求該城市一天中早高峰時間段這四個主干道的入口發(fā)生擁堵的概率.
(2)各人口一旦出現(xiàn)擁堵就需要交通協(xié)管員來疏通,聘請交通協(xié)管員有以下兩種方案可供選擇.方案一:四個主干道入口在早高峰時間段每天各聘請一位交通協(xié)管員,聘請每位交通協(xié)管員的日費用為(,且)元.方案二:在早高峰時間段若某主干道入口發(fā)生擁堵,交警部門則需臨時調派兩位交通協(xié)管員協(xié)助疏通交通,調派后當日需給每位交通協(xié)管員的費用為200元.以四個主干道入口聘請交通協(xié)管員的日總費用的數(shù)學期望為依據(jù),你認為在這兩個方案中應該如何選擇?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正項數(shù)列的前項和為,若,.
(1)證明:當時,;
(2)求數(shù)列的通項公式;
(3)設,求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】國家每年都會對中小學生進行體質健康監(jiān)測,一分鐘跳繩是監(jiān)測的項目之一.今年某小學對本校六年級300名學生的一分鐘跳繩情況做了統(tǒng)計,發(fā)現(xiàn)一分鐘跳繩個數(shù)最低為10,最高為189.現(xiàn)將跳繩個數(shù)分成,,,,,6組,并繪制出如下的頻率分布直方圖.
(1)若一分鐘跳繩個數(shù)達到160為優(yōu)秀,求該校六年級學生一分鐘跳繩為優(yōu)秀的人數(shù);
(2)上級部門要對該校體質監(jiān)測情況進行復查,發(fā)現(xiàn)每組男、女學生人數(shù)比例有很大差別,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為,組男、女人數(shù)之比為.試估計此校六年級男生一分鐘跳繩個數(shù)的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表,結果保留整數(shù)).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,為直角梯形,,,平面平面,是以為斜邊的等腰直角三角形,,為上一點,且.
(1)證明:直線平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)是定義在R上的奇函數(shù),當時,,則下列命題正確的是( )
A.當時,
B.函數(shù)有3個零點
C.的解集為
D.,都有
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,,其中m是不等于零的常數(shù).
(1)時,直接寫出的值域;
(2)求的單調遞增區(qū)間;
(3)已知函數(shù),,定義:,,,,其中,表示函數(shù)在上的最小值,表示函數(shù)在上的最大值.例如:,,則,,,.當時,恒成立,求n的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列:,,,(),與數(shù)列:,,,,(),記.
(1)若,求的值;
(2)求的表達式;
(3)已知,且存在正整數(shù),使得在中有4項為100,求的值,并指出哪4項為100.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示的圓錐的體積為,圓的直徑,點C是的中點,點D是母線PA的中點.
(1)求該圓錐的側面積;
(2)求異面直線PB與CD所成角的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com