【題目】如圖,在 中, , ,點 在 邊上,且 , .
(I)求 ;
(II)求 的長.
【答案】解:(I)在 中,∵ ,∴
∴
(II)在 中,由正弦定理得:
在 中,由余弦定理得:
∴
【解析】(I)根據(jù)同角三角函數(shù)基本關系式sin2+co2=1可求出sin,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角和,將用和表示,然后利用兩角差的正弦公式即可求解;(II)在中,由正弦定理可得:=,而=,從而可求出BD的長;在中,由余弦定理可知:AC2=AB2+BC2-2ABBCcosB,進而可求出AC的長.
【考點精析】解答此題的關鍵在于理解兩角和與差的正弦公式的相關知識,掌握兩角和與差的正弦公式:,以及對正弦定理的定義的理解,了解正弦定理:.
科目:高中數(shù)學 來源: 題型:
【題目】小明需要購買單價為3元的某種筆記本.他現(xiàn)有10元錢,設他購買時所花的錢數(shù)為自變量x(單位:元),筆記本的個數(shù)為y(單位:個),若y可以表示為x的函數(shù),則這個函數(shù)的定義域為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中,正確的是( )
A.斜率相等的兩條直線一定平行
B.若兩條不重合的直線l1 , l2平行,則它們的斜率一定相等
C.直線l1:x=1與直線l2:x=2不平行
D.直線l1:( -1)x+y=2與直線l2:x+( +1)y=3平行
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四棱錐 中, 平面 , ∥ , ,
(1)求證: 平面
(2)求證:平面 平面
(3)設點 為 中點,在棱 上是否存在點 ,使得 ∥平面 ?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在等比數(shù)列{an}中,a1=2,前n項和為Sn , 若數(shù)列{an+1}也是等比數(shù)列,則Sn等于( ).
A.2n+1-2
B.3n
C.2n
D.3n-1
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知等差數(shù)列 的公差 ,它的前 項和為 ,若 ,且 成等比數(shù)列.
(1)求數(shù)列 的通項公式 及前 項和 ;
(2)令 ,求數(shù)列 的前 項和 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: 的離心率為 ,右焦點為( ,0)
(1)求橢圓C的方程;
(2)若過原點 作兩條互相垂直的射線,與橢圓交于A,B兩點,求證:點O到直線AB的距離為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】函數(shù)f(x)=x3﹣ax+1在區(qū)間(1,+∞)內(nèi)是增函數(shù),則實數(shù)a的取值范圍是( )
A.a<3
B.a>3
C.a≤3
D.a≥3
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知長方體ABCD﹣A1B1C1D1中,底面ABCD為正方形,DD1⊥平面ABCD,AB=4,AA1=2,點E1在棱C1D1上,且D1E1=3.
(Ⅰ)在棱CD上確定一點E,使得直線EE1∥平面D1DB,并寫出證明過程;
(Ⅱ)若動點F在正方形ABCD內(nèi),且AF=2,請說明點F的軌跡,探求E1F長度的最小值并求此時直線E1F與平面ABCD所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com