(本題滿分14分)
  如圖,在四棱錐中,底面ABCD是正方形,側(cè)棱底面ABCD,,E是PC的中點(diǎn),作交PB于點(diǎn)F。
  (I)證明平面;
  (II)證明平面EFD;
  (III)求二面角的大小。

方法一:
  (I)證明:連結(jié)AC,AC交BD于O。連結(jié)EO。
  底面ABCD是正方形,點(diǎn)O是AC的中點(diǎn)
  在中,EO是中位線,
  而平面EDB且平面EDB,
  所以,平面EDB。
 (II)證明:底在ABCD且底面ABCD,
   ①   同樣由底面ABCD,得
  底面ABCD是正方形,有平面PDC
  而平面PDC, ②     ………………………………6分
  由①和②推得平面PBC  而平面PBC,
  又,所以平面EFD
(III)解:由(II)知,,故是二面角的平面角
  由(II)知,設(shè)正方形ABCD的邊長為,則
  中,
   在中,
  所以,二面角的大小為
  方法二:如圖所示建立空間直角坐標(biāo)系,D為坐標(biāo)原點(diǎn)。設(shè)
  (I)證明:連結(jié)AC,AC交BD于G。連結(jié)EG。依題意得
  底面ABCD是正方形,是此正方形的中心, 故點(diǎn)G的坐標(biāo)為
  
  。這表明。
  而平面EDB且平面EDB,平面EDB。
  (II)證明:依題意得。又
   
  由已知,且所以平面EFD。
  (III)解:設(shè)點(diǎn)F的坐標(biāo)為
  
  從而所以
  
  由條件知,
  解得
  點(diǎn)F的坐標(biāo)為
  
  
  即,故是二面角的平面角。
  
  
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若一條直線與一個(gè)平面成720角,則這條直線與這個(gè)平面內(nèi)不經(jīng)過斜足的直線所成角中最大角等于
A. 720B.900C. 1080 D.1800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于平面和共面的直線,下列命題中真命題的是(   )          
A.若所成的角相等,則;B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在空間,有四個(gè)命題,①有兩組對(duì)邊相等的四邊形是平行四邊形②四邊相等的四邊形是菱形③平行于同一條直線的兩直線平行④有兩邊及其夾角對(duì)應(yīng)的兩個(gè)三角形全等。其中正確的命題的序號(hào)是                         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖所示的多面體是由底面為的長方體被截面所截面而得到的,其中. 求點(diǎn)到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)表示三條不同的直線,表示三個(gè)不同的平面,給出下列四個(gè)命題:
①若,則;
②若內(nèi)的射影,,則;
③若是平面的一條斜線,,為過的一條動(dòng)直線,則可能有;
④若,則
其中真命題的個(gè)數(shù)為( )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

三角形ABC中,A(5,-1)、B(-1,7)、C(1,2),求: (1)BC邊上的中線AM的長;(2)∠CAB的平分線AD的長;(3)cosABC的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,平面,,的中點(diǎn),則的大小關(guān)系是(     )
A.B.
C.D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

棱長為的正方體的8個(gè)頂點(diǎn)都在
的表面上,E、F分別是棱的中點(diǎn),則直
線EF被球截得的線段長是__________.

查看答案和解析>>

同步練習(xí)冊(cè)答案