地為綠化環(huán)境,移栽了銀杏樹棵,梧桐樹棵.它們移栽后的成活率分別
、,每棵樹是否存活互不影響,在移栽的棵樹中:
(1)求銀杏樹都成活且梧桐樹成活棵的概率;
(2)求成活的棵樹的分布列與期望.
(1);(2)詳見解析.

試題分析:(1)先求出銀杏數(shù)分別成活、、棵的概率,以及梧桐樹分別成活、、、棵的概率,
然后利用事件的獨(dú)立性求出題中事件的概率;(2)先確定隨機(jī)變量的可能取值,利用事件的獨(dú)立性求出
隨機(jī)變量在相應(yīng)取值下的概率,列出分布列求出隨機(jī)變量的數(shù)學(xué)期望即可.
(1)設(shè)表示“銀杏樹都成活且梧桐樹成活棵”,
設(shè)表示“銀杏樹成活棵”;,,
表示“梧桐樹成活棵”;,,,
;
(2)的可能的取值:、、、、,,
,

同理:,,,
的分布列為














.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

袋中裝白球和黑球各3個(gè),從中任取2個(gè),則至多有一個(gè)黑球的概率是( 。
A.
1
5
B.
4
5
C.
1
3
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)有關(guān)于x的一元二次方程x2-2ax+b2=0.
(1)若a是從0、1、2、3四個(gè)數(shù)中任取的一個(gè)數(shù),b是從0、1、2三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程沒有實(shí)根的概率.
(2)若a是從區(qū)間[0,3]內(nèi)任取的一個(gè)數(shù),b=2,求上述方程沒有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下表為某班英語及數(shù)學(xué)成績的分布.學(xué)生共有50人,成績分1~5五個(gè)檔次.例如表中所示英語成績?yōu)?分、數(shù)學(xué)成績?yōu)?分的學(xué)生為5人.將全班學(xué)生的姓名卡片混在一起,任取一枚,該卡片同學(xué)的英語成績?yōu)閤,數(shù)學(xué)成績?yōu)閥(注:沒有相同姓名的學(xué)生).
(Ⅰ)求a+b的值;
(Ⅱ)求x=1的概率;
(Ⅲ)求x≥3且y=3的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

利用計(jì)算機(jī)隨機(jī)模擬方法計(jì)算y=x2與y=9所圍成的區(qū)域Ω的面積時(shí),可以先運(yùn)行以下算法步驟:
第一步:利用計(jì)算機(jī)產(chǎn)生兩個(gè)在0~1區(qū)間內(nèi)的均勻隨機(jī)數(shù)a,b;
第二步:對隨機(jī)數(shù)a,b實(shí)施變換:
a1=6a-3
b1=9b
得到點(diǎn)A(a1,b1);
第三步:判斷點(diǎn)A(a1,b1)的坐標(biāo)是否滿足b1
a21
;
第四步:累計(jì)所產(chǎn)生的點(diǎn)A的個(gè)數(shù)m,及滿足b1
a21
的點(diǎn)A的個(gè)數(shù)n;
第五步:判斷m是否小于M(一個(gè)設(shè)定的數(shù)).若是,則回到第一步,否則,輸出n并終止算法.
(1)點(diǎn)落在y=x2上方的概率計(jì)算公式是P=______;
(2)若設(shè)定的M=1000,且輸出的n=340,則用隨機(jī)模擬方法可以估計(jì)出區(qū)域Ω的面積為______(保留小數(shù)點(diǎn)后兩位數(shù)字).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)射手進(jìn)行射擊,記事件E1:“脫靶”,E2:“中靶”,E3:“中靶環(huán)數(shù)大于4”,E4:“中靶環(huán)數(shù)不小于5”,則在上述事件中,互斥而不對立的事件共有 (  ).
A.1對B.2對C.3對D.4對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列四個(gè)命題:
①對立事件一定是互斥事件;
②若A,B為兩個(gè)事件,則P(A∪B)=P(A)+P(B);
③若事件A,B,C兩兩互斥,則P(A)+P(B)+P(C)=1;
④若事件A,B滿足P(A)+P(B)=1,則A,B是對立事件.
其中錯(cuò)誤命題的個(gè)數(shù)是(  )
(A)0      (B)1      (C)2      (D)3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

從裝有個(gè)紅球和個(gè)黒球的口袋內(nèi)任取個(gè)球,那么互斥而不對立的兩個(gè)事件是
A.至少有一個(gè)黒球與都是紅球B.至少有一個(gè)黒球與都是黒球
C.至少有一個(gè)黒球與至少有個(gè)紅球 D.恰有個(gè)黒球與恰有個(gè)黒球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

一個(gè)人連續(xù)射擊2次,則下列各事件中,與事件“恰中一次”互斥但不對立的事件是(  )
A.至多射中一次B.至少射中一次
C.第一次射中D.兩次都不中

查看答案和解析>>

同步練習(xí)冊答案