(本小題滿分12分)
已知函數(shù).
(I)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(II)若函數(shù)的圖象在點處的切線的傾斜角為45o,問:m在什么范圍取值時,對于任意的,函數(shù)在區(qū)間上總存在極值?
(1)在(0,1)上單調(diào)遞增,在(1,+∞)上單調(diào)遞減.
(2)。
【解析】
試題分析:
(I)當(dāng)時,,
令時,解得,所以在(0,1)上單調(diào)遞增;
令時,解得,所以在(1,+∞)上單調(diào)遞減.
(II)因為函數(shù)的圖象在點(2,)處的切線的傾斜角為45o,
所以.
所以,.
,
,
因為任意的,函數(shù)在區(qū)間上總存在極值,
所以只需
解得.
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;導(dǎo)數(shù)的幾何意義。
點評:(1)本題注意考查導(dǎo)數(shù)知識的運用,利用導(dǎo)數(shù)來研究函數(shù)的單調(diào)性很熱極值,同時也考查了學(xué)生分析問題、解決問題的能力,屬于中檔題.(2)利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,一定要先求函數(shù)的定義域。(3)要滿足函數(shù)y=f(x)在內(nèi)有極值點。只需滿足內(nèi)有變號零點。
科目:高中數(shù)學(xué) 來源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(2009湖南卷文)(本小題滿分12分)
為拉動經(jīng)濟增長,某市決定新建一批重點工程,分別為基礎(chǔ)設(shè)施工程、民生工程和產(chǎn)業(yè)建設(shè)工程三類,這三類工程所含項目的個數(shù)分別占總數(shù)的、、.現(xiàn)有3名工人獨立地從中任選一個項目參與建設(shè).求:
(I)他們選擇的項目所屬類別互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人選擇的項目屬于民生工程的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)
某民營企業(yè)生產(chǎn)A,B兩種產(chǎn)品,根據(jù)市場調(diào)查和預(yù)測,A產(chǎn)品的利潤與投資成正比,其關(guān)系如圖1,B產(chǎn)品的利潤與投資的算術(shù)平方根成正比,其關(guān)系如圖2,
(注:利潤與投資單位是萬元)
(1)分別將A,B兩種產(chǎn)品的利潤表示為投資的函數(shù),并寫出它們的函數(shù)關(guān)系式.(2)該企業(yè)已籌集到10萬元資金,并全部投入到A,B兩種產(chǎn)品的生產(chǎn),問:怎樣分配這10萬元投資,才能使企業(yè)獲得最大利潤,其最大利潤為多少萬元.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com